Control Measures for Water Leaked from the H4 Area Tank
— Status of the Consideration of the Applicability of the Collecting Method for Strontium Present in the Soil —

March 27, 2014
Tokyo Electric Power Company
1. Overview of the Consideration

- In considering the applicability, an laboratory test and a field test are to be carried out, and the effectiveness of related measures.

 Laboratory test: Sr-collecting effect of the collecting material and soil conditioner※1 (apatite + crushed stones) is to be confirmed.

 Field test: Confirm the effect of collection※3 as a supplementary purpose in addition to the main purposes of confirming workability and quality※2.

※1 The soil conditioner is a material made by mixing hydroxy-apatite [Ca₁₀(PO₄)₆(OH)₂] with crushed stones.
※2 The main purpose of the field test is to confirm the mixing method of soil conditioner and the workability according to the specified compounding ratio etc.
※3 The effect of collection is determined from the result of the laboratory test. The result of the field test is to be reflected in the construction/installation as needed.

[Laboratory Test]

The following tests are conducted in the laboratory:
- Batch test (Capability test of the collecting material)
- Column test (Simulation test of the soil conditioner)

[Field Test]

A full-scale verification test is conducted on site.
- Confirmation of workability and quality (Main purposes)
- Confirmation of the effect of collecting Sr (Supplementary)
2. Laboratory Test (1) Batch Test ① Test Results

- The batch test is intended to confirm the distribution coefficient, removal ratio※1, and Ca substitution ratio※2 of apatite in relation to Sr.

[Test Results]
Distribution coefficient: 0.2 to 0.25m³/kg (200 to 250ml/g)
Removal ratio: 60% to 70% (decontamination factor DF※3: 3 to 3.5)
Ca substitution ratio: 0.07%※4

※1 Relative values in proportion to apatite (1g), with the solid-liquid ratio being 1/100
※2 On the assumption that all the amount of adsorbed Sr has been substituted
※3 DF=(Initial liquid-phase concentration of Sr)/(Liquid-phase concentration of Sr after adsorption)
※4 Final values of the amount of remaining adsorbed Sr after the desorption test

[Distribution coefficient Kd]

\[K_d = C_s/C_l \]

\(C_s \): Solid-phase concentration of Sr
\(C_l \): Liquid-phase concentration of Sr

[Removal ratio]

\[\text{Removal ratio} = \frac{(C_0 - C_l)}{C_0} \]

\(C_0 \): Initial liquid-phase concentration of Sr
\(C_l \): Liquid-phase concentration of Sr after adsorption
Evaluation of the Test Results

Distribution coefficient
- The distribution coefficient can be defined as the sum of electrical surface adsorption and adsorption by ion exchange between Ca and Sr.
- The distribution coefficient obtained from the test results was in the range from 0.2 to 0.25m³/kg (200 to 250ml/g), and the removal ratio was between 60 to 70%.
- When compared in terms of the distribution coefficient, the above values are smaller than those of zeolites※1 such as Zeolite A (790ml/g), Zeolite X (790ml/g) and clinoptilolite (560ml/g) etc.

Ca substitution ratio
- It is the ratio of the adsorbed amount of Sr to the amount of Ca present in 1 gram of apatite (8.8mmol/g)(100% if all the Ca content of the apatite※2 substitutes Sr).
- The substitution ratio calculated from the final remaining amount of Sr after the desorption test shows the amount of Ca which contributed to the ion exchange.
- According to the test results, the final substitution ratio was 0.07%, showing the substitution ratio of Sr by Ca present in the apatite was very small. (This ratio was designed to be 10% at the Hanford Site)

※1 The Data Collection of the Atomic Energy Society of Japan, with seawater content of 1%
※2 Chemical formula: Ca₁₀(PO₄)₆(OH)₂
2. Laboratory Test (3) Additional Consideration

- As the Ca-substitution ratio of the apatite used for this test was low, we used other materials and carried out additional tests.

[Additional Consideration]

- A study on (natural and synthetic apatite) powder-type apatite, confirmation of the effect and selection of adequate materials
- Confirmation of the effect of solution-type apatite (refer to the specification for the Hanford Site)
- A study on (natural and synthetic) zeolites, confirmation of the effect and selection of adequate materials

[The specification for the Hanford Site]
- Target of reduction in Sr concentration: By 90% of the maximum concentration
 (Solution-type)
 • Main works: Synthetic apatite → On-site collection effect: About 90%
 (Powder-type)
 • Field test: Natural apatite (calcination temperature*: 350° C) → On-site collection effect: About 90%
 • Main works: Natural apatite (calcination temperature: 1000 – 1100° C) → On-site collection effect: Not yet conducted

[The specification for this test]
(Powder-type)
- Field test: Natural apatite (calcination temperature: 1100° C)

※The higher calcination temperature enhances the crystalline property of apatite, and decreases the reactivity (substitution ratio) between Ca and Sr.
2. Laboratory Test (4) A List of Considered Materials

<table>
<thead>
<tr>
<th>Types of materials</th>
<th>Calcination temperature</th>
<th>Remarks</th>
<th>Availability</th>
<th>Testing status</th>
<th>Analysis/Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural apatites</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apatite ①: Beef bone</td>
<td>1100°C</td>
<td>$K_d = 0.2\text{m}^3/\text{kg}$</td>
<td>Already used</td>
<td>Already used</td>
<td>Already used</td>
</tr>
<tr>
<td>Bone char (coarse grain): Beef bone</td>
<td>1000 - 1100°C</td>
<td>Used at the Hanford Site</td>
<td>Available</td>
<td>Completed</td>
<td>Now being carried out</td>
</tr>
<tr>
<td>APATITE ② (fine grain): Fish bone</td>
<td>350°C</td>
<td>Used at the Hanford Site</td>
<td>Available</td>
<td>Completed</td>
<td>Now being carried out</td>
</tr>
<tr>
<td>Apatite ②: Beef bone</td>
<td>850 - 900°C</td>
<td></td>
<td>Available</td>
<td>Now being carried out</td>
<td>Not yet conducted</td>
</tr>
<tr>
<td>Steamed bone meal: Pork bone</td>
<td>Steamed at 180°C</td>
<td></td>
<td>Available</td>
<td>Completed</td>
<td>Now being carried out</td>
</tr>
<tr>
<td>Synthetic apatites</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydroxy-apatite</td>
<td>Non-calcinated</td>
<td></td>
<td>Available</td>
<td>Completed</td>
<td>Now being carried out</td>
</tr>
<tr>
<td>Tribasic calcium phosphate①</td>
<td>Non-calcinated</td>
<td></td>
<td>Available</td>
<td>Completed</td>
<td>Now being carried out</td>
</tr>
<tr>
<td>Hydroxy-apatite slurry</td>
<td>Non-calcinated</td>
<td></td>
<td>Available</td>
<td>Completed</td>
<td>Now being carried out</td>
</tr>
<tr>
<td>Tribasic calcium phosphate②</td>
<td>Non-calcinated</td>
<td></td>
<td>Available</td>
<td>Completed</td>
<td>Now being carried out</td>
</tr>
<tr>
<td>Solution-type CaCl₂+(Na₂HPO₄+Na₃PO₄+NH₄NO₃)</td>
<td>-</td>
<td>Refer to the specification for the Hanford Site</td>
<td>Available</td>
<td>Completed</td>
<td>Now being carried out</td>
</tr>
<tr>
<td>Natural zeolites</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clinoptilolite (produced in Shimane)</td>
<td>-</td>
<td></td>
<td>Available</td>
<td>Completed</td>
<td>Now being carried out</td>
</tr>
<tr>
<td>Clinoptilolite (produced in Futatsui)</td>
<td>-</td>
<td></td>
<td>Available</td>
<td>Completed</td>
<td>Now being carried out</td>
</tr>
<tr>
<td>Zeophyllite #1424 (Mordenite)</td>
<td>-</td>
<td></td>
<td>Available</td>
<td>Now being carried out</td>
<td>Not yet conducted</td>
</tr>
<tr>
<td>Nitto Zeolite No.2 (Mordenite)</td>
<td>-</td>
<td></td>
<td>Available</td>
<td>Now being carried out</td>
<td>Not yet conducted</td>
</tr>
<tr>
<td>Synthetic zeolites</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-type zeolite (synthetic)</td>
<td>-</td>
<td></td>
<td>Available</td>
<td>Completed</td>
<td>Now being carried out</td>
</tr>
<tr>
<td>X-type zeolite</td>
<td>-</td>
<td></td>
<td>Available</td>
<td>Completed</td>
<td>Now being carried out</td>
</tr>
</tbody>
</table>
3. Implementation Processes

- Implementation processes have been changed due to additional tests etc. (Black→Red)
- The implementation of the main works will be determined in a comprehensive manner on the basis of the results of additional laboratory test etc.

<table>
<thead>
<tr>
<th></th>
<th>2014.1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Laboratory Test]</td>
<td></td>
<td></td>
<td></td>
<td>▼</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Field Test]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Confirmation of workability</td>
<td></td>
<td></td>
<td></td>
<td>▼</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Confirmation of quality</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>▼</td>
<td></td>
</tr>
<tr>
<td>Confirmation of Sr-collection effect</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>▼</td>
</tr>
</tbody>
</table>

- Implementation processes have been changed due to additional tests etc. (Black→Red)
- The implementation of the main works will be determined in a comprehensive manner on the basis of the results of additional laboratory test etc.