Summary of Decommissioning and Contaminated Water Management

Secretariat of the Team for Countermeasures for Decommissioning and Contaminated Water Treatment

June 27, 2019

Main decommissioning work and steps

Fuel removal from the Unit 4 SFP was completed on December 22, 2014 and removal from the Unit 3 SFP has been underway since April 15, 2019. Dust density in the surrounding environment is being monitored and work is being implemented with safety first. Work continues sequentially toward the start of fuel removal from Units 1 and 2 and debris (Note 1) retrieval from Units 1-3.

Three principles behind contaminated water countermeasures

Countermeasures for contaminated water are implemented in accordance with the following three principles:

1. **Eliminate** contamination sources
 - Multi-nuclide removal equipment, etc.
 - Remove contaminated water from the trench (Note 3)
 - (Note 3) Underground tunnel containing pipes.

2. **Isolate** water from contamination
 - Pump up groundwater for bypass
 - Pump up groundwater near buildings
 - Land-side impermeable walls
 - Waterproof pavement

3. **Prevent leakage** of contaminated water
 - Enhance soil by adding sodium silicate
 - Sea-side impermeable walls
 - Increase the number of (welded-joint) tanks

Multi-nuclide removal equipment (ALPS), etc.

- This equipment removes radionuclides from the contaminated water in tanks and reduces risks.
- Treatment of contaminated water (RO concentrated salt water) was completed in May 2015 with multi-nuclide removal equipment, additional multi-nuclide removal equipment installed by TEPCO (operation commenced in September 2014) and a Japanese Government subsidy project (operation commenced in October 2014).
- Strontium-treated water from equipment other than ALPS is being re-treated in ALPS.

Reducing the generation of contaminated water through multi-layered measures

- Multi-layered measures are implemented to reduce the inflow of rainwater and groundwater into buildings.
- Multi-layered contaminated water management measures, including land-side impermeable walls and subdrains, have kept the groundwater level low stable. The increase in contaminated water generation during rainfall is being suppressed by repairing damaged portions of building roofs, facing onsite, etc.
- Through these measures, the generation of contaminated water was reduced from approx. 470 m³/day (in FY2014) to approx. 170 m³/day (in FY2018).
- The groundwater level around Unit 1-4 Reactor Buildings will continue to be maintained at a low level by steadily operating land-side impermeable walls. In addition, measures to prevent rainwater inflow, including repairing damaged parts of building roofs and facing, continue to further reduce the generation of contaminated water.

Replacing flanged tanks with welded-joint tanks

- Replacement of flanged tanks with more reliable welded-joint tanks is underway.
- Strontium-treated water stored in flanged tanks was purified and transferred to welded-joint tanks. The transfer was completed in November 2018. Transfer of ALPS-treated water was completed in March 2019.

©Tokyo Electric Power Company Holdings, Inc. All Rights Reserved.
Progress status

- The temperatures of the Reactor Pressure Vessel (RPV) and Primary Containment Vessel (PCV) of Units 1-3 have been maintained within the range of approx. 20-30°C over the past month.

 1. The values varied somewhat, depending on the unit and location of the thermometer.
 2. In May 2019, the radiation exposure dose due to the release of radioactive materials from the Unit 1-4 Reactor Buildings was evaluated at less than 0.00023 mSv/year at the site boundary. The annual radiation dose from natural radiation is approx. 2.1 mSv/year (average in Japan).

Operation start of the third cesium-adsorption apparatus from July

For the third cesium adsorption apparatus, which will be installed to accelerate treatment and purification of contaminated water in buildings, a certificate showing the completed pre-operation test was received in January 2019. To further improve the apparatus performance, verification operation and evaluation were conducted for new adsorption materials. Based on the expected improvement in performance, operation will start in early July 2019. Through this operation, measures depending on the condition such as work to reduce the water level in buildings while also utilizing other forms of cesium adsorption apparatus will become available.

The 4th International Forum on the Decommissioning of the Fukushima Daiichi Nuclear Power Station

The 4th International Forum on the Decommissioning of the Fukushima Daiichi Nuclear Power Station will be held in Tomioka Town on August 4 (Sun) and Iwaki City on August 5 (Mon). (Organizer: NDF*)

On Day 1, all the participants will consider decommissioning and representations from the local community will engage in frank dialog with technical experts. On Day 2, participants will discuss how to proceed with decommissioning together with the local community.

Start of second fuel removal using transport container at Unit 3 from July

At Unit 3, the first fuel removal was completed on April 25 and this removal is being reviewed (improving procedures and facilities). Work has begun to collect the removed rubble and training on removal is being provided toward the second removal using the transport container from July and subsequent removal work.

The dust density in the surrounding environment, etc. is monitored on an ongoing basis and work implemented with safety first.

Resume of work to create an access route at Unit 1 from July

Toward the investigation inside the PCV, work to create an access route is underway. The inner door of the X-2 penetration was drilled (for about five minutes) on June 4. Monitoring data during the work showed that the dust density of the temporary monitor, which was installed in front of the filter to reduce the radioactive materials density, exceeded the criteria value set for work management. Work was suspended and data was checked and evaluated.

During the work on this occasion, the values of the permanent dust monitor, which was installed downstream of the filter, did not vary significantly, nor those around site boundaries, etc., and there was no influence on the environment.

Work procedures will be examined, etc. to resume work by the end of July 2019 and implement work with safety first.

Investigation into the inflow route to the Onsite Bunker Building

Regarding the inflow of groundwater, etc. to the Onsite Bunker Building, the core was removed near the funnel and the inflow condition of the core section was investigated by June 20 to identify the cause. The investigation detected a vinyl hose laid there, which was supposed to continue near the outer walls of the building. Currently a temporary plug has been installed until completion of the water shutoff work to suppress inflow.

Toward examining permanent water shutoff measures, an investigation on the upstream side including the wall side will be examined and implemented to check the inside of the hose and identify the cause of the inflow.
Data of Monitoring Posts (MP1-MP8) measuring the airborne radiation rate around site boundaries showed 0.416 – 1.426 μSv/h (May 29 – June 25, 2019). We improved the measurement conditions of monitoring posts 2 to 8 to measure the air-dose rate precisely. Construction work, such as tree-clearing, surface soil removal and shield wall setting, were implemented from February 10 to April 18, 2012. Therefore, monitoring results at these points are lower than elsewhere in the power plant site.

The radiation shielding panels around monitoring post No. 6, which is one of the instruments used to measure the radiation dose at the power station site boundary, were taken off from July 10-11, 2013, since further deforestation, etc. had caused the surrounding radiation dose to decline significantly.
I. Confirmation of the reactor conditions

1. Temperatures inside the reactors

Through continuous reactor cooling by water injection, the temperatures of the Reactor Pressure Vessel (RPV) bottom and the Primary Containment Vessel (PCV) gas phase were maintained within the range of approx. 20 to 30°C for the past month, though they varied depending on the unit and location of the thermometer.

[Graph showing RPV bottom temperatures (recent quarter) and PCV gas phase temperatures (recent quarter)]

2. Release of radioactive materials from the Reactor Buildings

As of May 2019, the density of radioactive materials newly released from Reactor Building Units 1-4 into the air was measured at approx. 2.6x10^-12 and 2.9x10^-12 Bq/cm³ for Cs-134 and -137 respectively, while the radiation exposure dose due to the release of radioactive materials was less than 0.00023 mSv/year.

Annual radiation dose at site boundaries by radioactive materials (cesium) released from Reactor Building Units 1-4

[Graph showing monthly data and annual data for radiation dose]

Note: Different formulas and coefficients were used to evaluate the radiation dose in the facility operation plan and monthly report. The evaluation methods were integrated in September 2012. As the fuel removal from the spent fuel pool (SFP) commenced for Unit 4, the radiation exposure dose from Unit 4 was added to the items subject to evaluation since November 2013. The evaluation has been changed to a method considering the values of continuous dust monitors since FY2015, with data to be evaluated monthly and announced the following month.

3. Other indices

There was no significant change in indices, including the pressure in the PCV and the PCV radioactivity density (Xe-135) for monitoring criticality, nor was any abnormality in the cold shutdown condition or criticality sign detected.

Based on the above, it was confirmed that the comprehensive cold shutdown condition had been maintained and the reactors remained in a stabilized condition.

II. Progress status by each plan

1. Contaminated water management

In accordance with the three principles “eliminate” contamination sources, “isolate” water from contamination and “prevent leakage” of contaminated water, multi-layered contaminated water management measures have been implemented to stably control groundwater.

- Status of contaminated water generated
 - Multi-layered measures, including pumping up by subdrains and land-side impermeable walls, which were implemented to control the continued generation of contaminated water, reduced the groundwater inflow into buildings.
 - Following the steady implementation of “isolation” measures (groundwater bypass, subdrains, land-side impermeable walls, etc.), the inflow reduced from approx. 470 m³/day (the FY2014 average) when the measures were first launched to approx. 170 m³/day (the FY2018 average), though it varied depending on rainfall, etc.
 - Measures will continue to further reduce the volume of contaminated water generated.

- Operation of the groundwater bypass
 - From April 9, 2014, the operation of 12 groundwater bypass pumping wells commenced sequentially to pump up groundwater. The release then started from May 21, 2014, in the presence of officials from the Intergovernmental Liaison Office for the Decommissioning and Contaminated Water Issue of the Cabinet Office. Up until June 25, 2019, 475,857 m³ of groundwater had been released. The pumped-up groundwater was temporarily stored in tanks and released after Tepco and a third-party organization had confirmed that its quality met operational targets.
 - Pumps are inspected and cleaned as required based on their operational status.

- Operation of the Water Treatment Facility special for Subdrain & Groundwater drains
 - To reduce the level of groundwater flowing into the buildings, work began to pump up groundwater from wells (subdrains) around the buildings on September 3, 2015. The pumped-up groundwater was then purified at dedicated facilities and released from September 14, 2015, in the presence of officials from the Intergovernmental Liaison Office for the Decommissioning and Contaminated Water Issue of the Cabinet Office. Up until June 25, 2019, a total of 699,715 m³ had been drained after Tepco and a third-party organization had confirmed that its quality met operational targets.
 - Due to the rising water level of the groundwater drain pond after the sea-side impermeable walls had been closed, pumping started on November 5, 2015. Up until June 25, 2019, a total of approx. 202,849 m³ had been pumped up and a volume of under 10 m³/day is being transferred from the groundwater drain to the Turbine Buildings (average for the period May 23 – June 19, 2019).
 - As one of the multi-layered contaminated water management measures, in addition to waterproof pavement (facing; as of the end of May 2019, approx. 94% of the planned area was completed) to prevent rainfall infiltrating the ground, etc., facilities to enhance the subdrain treatment system were installed and went into operation from April 2018, increasing the treatment capacity from 900 to 1,500 m³/day and improving reliability. Operational efficiency was also improved to treat up to 2,000 m³/day for almost one week during the peak period.
 - To maintain the level of groundwater pumped up from the subdrains, work to install additional subdrain pits and recover those already in place is underway. The additional pits are scheduled to begin operation sequentially from a pit for which work was completed (12 of 14 pits went into operation). For recovered pits, work for all three pits scheduled was completed, all of which went into operation from December 26, 2018.
 - To eliminate the need to suspend water pumping while cleaning the subdrain transfer pipe, the pipe will be duplicated.

Figure 1: Changes in contaminated water generated and inflow of groundwater, rainwater, etc. into buildings

- Operation of the groundwater bypass
 - From April 9, 2014, the operation of 12 groundwater bypass pumping wells commenced sequentially to pump up groundwater. The release then started from May 21, 2014, in the presence of officials from the Intergovernmental Liaison Office for the Decommissioning and Contaminated Water Issue of the Cabinet Office. Up until June 25, 2019, 475,857 m³ of groundwater had been released. The pumped-up groundwater was temporarily stored in tanks and released after Tepco and a third-party organization had confirmed that its quality met operational targets.
 - Pumps are inspected and cleaned as required based on their operational status.

- Operation of the Water Treatment Facility special for Subdrain & Groundwater drains
 - To reduce the level of groundwater flowing into the buildings, work began to pump up groundwater from wells (subdrains) around the buildings on September 3, 2015. The pumped-up groundwater was then purified at dedicated facilities and released from September 14, 2015, in the presence of officials from the Intergovernmental Liaison Office for the Decommissioning and Contaminated Water Issue of the Cabinet Office. Up until June 25, 2019, a total of 699,715 m³ had been drained after Tepco and a third-party organization had confirmed that its quality met operational targets.
 - Due to the rising water level of the groundwater drain pond after the sea-side impermeable walls had been closed, pumping started on November 5, 2015. Up until June 25, 2019, a total of approx. 202,849 m³ had been pumped up and a volume of under 10 m³/day is being transferred from the groundwater drain to the Turbine Buildings (average for the period May 23 – June 19, 2019).
 - As one of the multi-layered contaminated water management measures, in addition to waterproof pavement (facing; as of the end of May 2019, approx. 94% of the planned area was completed) to prevent rainfall infiltrating the ground, etc., facilities to enhance the subdrain treatment system were installed and went into operation from April 2018, increasing the treatment capacity from 900 to 1,500 m³/day and improving reliability. Operational efficiency was also improved to treat up to 2,000 m³/day for almost one week during the peak period.
 - To maintain the level of groundwater pumped up from the subdrains, work to install additional subdrain pits and recover those already in place is underway. The additional pits are scheduled to begin operation sequentially from a pit for which work was completed (12 of 14 pits went into operation). For recovered pits, work for all three pits scheduled was completed, all of which went into operation from December 26, 2018.
 - To eliminate the need to suspend water pumping while cleaning the subdrain transfer pipe, the pipe will be duplicated.
Installation of the pipe and ancillary facilities was completed.
• Since the subdrains went into operation, the inflow into buildings tended to decline to under 150 m³/day when the subdrain water level declined below T.P. 3.0 m but increased during rainfall.

Figure 2: Correlation between inflow such as groundwater and rainwater into buildings and the water level of Unit 1-4 subdrains

- Construction status of the land-side impermeable walls and status of groundwater levels around the buildings
 - An operation to maintain the land-side impermeable walls and prevent the frozen soil from thickening further continued from May 2017 on the north and south sides and started from November 2017 on the east side, where frozen soil of sufficient thickness was identified. The scope of the maintenance operation was expanded in March 2018.
 - In March 2018, construction of the land-side impermeable walls was completed, except for a portion of the depth, based on a monitoring result showing that the underground temperature had declined below 0°C in almost all areas, while on the mountain side, the difference between inside and outside increased to approx. 4.5 m. The 21st Committee on Countermeasures for Contaminated Water Treatment, held on March 7, 2018, evaluated that together with the function of subdrains, etc., a water-level management system to stably control groundwater and isolate the buildings from it had been established and had allowed a significant reduction in the amount of contaminated water generated.
 - A supplementary method was implemented for the unfrozen depth and it was confirmed that the temperature of this portion had declined below 0°C by September 2018. From February 2019, maintenance operation started at all sections.
 - The groundwater level in the area inside the land-side impermeable walls has been declining every year. On the mountain side, the difference between the inside and outside increased to approx. 4.5 m. The water level in the bank area has remained low (T.P. 1.6-1.7 m) compared to the ground surface (T.P. 2.5 m).

Operation of multi-nuclide removal equipment
• Regarding the multi-nuclide removal equipment (existing and high-performance), hot tests using radioactive water were underway (for existing equipment, System A: from March 30, 2013, System B: from June 13, 2013, System C: from September 27, 2013; and for high-performance equipment, from October 18, 2014). The additional multi-nuclide removal equipment went into full-scale operation from October 16, 2017.
• As of June 20, 2019, the volumes treated by existing, additional and high-performance multi-nuclide removal equipment were approx. 410,000, 563,000 and 103,000 m³, respectively (including approx. 9,500 m³ stored in the J1(D) tank, which contained water with highly concentrated radioactive materials at the System B outlet of the existing multi-nuclide removal equipment).
• To reduce the risks of strontium-treated water, treatment using existing, additional and high-performance multi-nuclide removal equipment has been underway (existing: from December 4, 2015; additional: from May 27, 2017; high-performance: from April 15, 2015). Up until June 20, 2019, approx. 601,000 m³ had been treated.
• Toward reducing the risk of contaminated water stored in tanks
 • Treatment measures comprising the removal of strontium by cesium-adsorption apparatus (KURION) (from January 6, 2015) and the secondary cesium-adsorption apparatus (SARRY) (from December 26, 2014) have been underway. Up until June 24, 2019, approx. 524,000 m³ had been treated.
• Measures in the Tank Area
 • Rainwater, under the release standard and having accumulated within the fenced-in area of the contaminated water tank area, was sprinkled on site after eliminating radioactive materials using rainwater-treatment equipment since May 21, 2014 (as of June 24, 2019, a total of 128,839 m³).

As of June 20, 2019

Figure 4: Status of contaminated water storage

Changes in contaminated water storage and changes in contaminated water storage (as of May 26, 2019)

1. Water amount for which the water level gauge indicates 5% or more
2. To detect storage increases more accurately, the calculation method was reviewed as follows from February 9, 2017: (The revised method was applied from March 1, 2018)
3. Changes based on the revised method to manage the transfer volume from the Unit 1 seawater pipe trench. (Period of revision: May 31 – June 26, 2018)
4. The storage amount increased due to transfer to buildings in association with the decontamination work.
5. From December 13, 2018 from rainfall in Namie to that within the site.
6. Since January 17, 2019, Unit 3 C/B contaminated water has been managed in addition to contaminated water storage in buildings. For the inflow of groundwater, rainwater, etc. to buildings and increases in storage have been reflected since January 24, 2019.
7. Considered attributable to the increased inflow of groundwater, rainwater, etc. to buildings due to the decline in the level of contaminated water in buildings. (January 17, April 22, May 16 and 30, June 13, 2019)
8. Water-level gauges were replaced (February 7 – March 7, 2018)
Unified calculation method for water volume and capacity of tanks storing contaminated water of Units 1-4
- Calculation methods for water volume and the capacity of tanks, which vary in each tank area, will be unified in all areas from July 2019.
- By this unification, the tank water volume and capacity, which were publicly announced, will be changed. The tank water volume will decrease by approx. 2,200 m³ for treated water in the multi-nuclide removal equipment, approx. 200 m³ for strontium-treated water and approx. 5 m³ for RO-treated water (fresh water). The tank capacity will decrease by approx. 2,200 m³ for treated water in the multi-nuclide removal equipment and approx. 200 m³ for strontium-treated water (the values are provisional and calculated as of May 23, 2019).
- Survey result of α radiation concentration in contaminant water near the bottom of the reactor buildings
 - As part of efforts to treat contaminated water in the Reactor Buildings (R/Bs), α nuclide in contaminated water in the buildings is being surveyed. A relatively high density of α radioactivity was detected in contaminated water near the bottom of the Unit 2 and 3 R/Bs. However, the density in the contaminated water treatment equipment in the rear stage remained at the same level as previously.
 - For contaminated water in the buildings in which α nuclide was detected, a filter test using a 0.1 μm filter confirmed that most of the α nuclide could be removed.
 - Research to grasp the characteristics of α nuclide will continue to examine how to facilitate the contaminated water treatment.

Investigation status into inflow parts at the Onsite Bunker Building
- Regarding the inflow of groundwater, etc. into the Onsite Bunker Building, the core was removed near the funnel and the inflow condition of the core section was investigated by June 20, 2019 to identify the cause. The investigation detected a vinyl hose laid there, which was supposed to continue to near the outer walls of the building.
- Currently a temporary hose plug has been installed until completion of the water shutoff work to suppress inflow.
- Toward examining permanent water shutoff measures, an investigation on the upstream side, including the wall side, will be examined and implemented to check the inside of the hose and identify the cause of the inflow.

Transfer of accumulated water in the connection of the Unit 2 seawater pipe trench and the building
- For the Unit 2 seawater pipe trench, filling and closure work started from November 2014 and was completed in March 2017 except for the connection with the Unit 2 Turbine Building south side. From March 2019, filling and closure of the connection with the building started.
- During the period June 19 to mid-July, 2019, accumulated water (gross β radiation density: 1.8 × 10³ Bq/L, water volume: approx. 140 m³) was transferred to the basement of the Unit 2 Turbine Building prior to filling and closure inside the trench.

Operation of the third cesium-adsorption apparatus
- For the third cesium-adsorption apparatus, which will be installed to accelerate treatment and purification of contaminated water in buildings, a certificate showing a completed pre-operation test was received in January 2019.
- To further improve the apparatus performance, verification operation and evaluation were conducted for new adsorption materials. Based on the expected improvement in performance, operation will start in early July 2019. Through this operation, measures depending on the condition, such as work to reduce the water level in buildings while also utilizing other forms of cesium-adsorption apparatus, will become available.

2. Fuel removal from the spent fuel pools
Work to help remove spent fuel from the pool is progressing steadily while ensuring seismic capacity and safety. The removal of spent fuel from the Unit 4 pool commenced on November 18, 2013 and was completed by December 22, 2014
- Main work to help spent fuel removal at Unit 1
 - The installation of windbreak fences, which will reduce the amount of dust scattering during rubble removal, started on October 31, 2017 and was completed by December 19, 2017.
 - From January 22, 2018, as work to prepare for fuel removal from the spent fuel pool (SFP), work began to remove rubble on the north side of the operating floor. Rubble is being carefully removed by suction equipment. No significant variation was identified around the site boundaries, where the density of radioactive materials was monitored and at onsite dust monitors during the above removal work. Once removed, the rubble is stored in solid waste storage facilities or elsewhere depending on the dose level.
 - Before formulating a plan to remove rubble around the SFP, an onsite investigation started from July 23, 2018 and was completed on August 2, 2018.
 - To create an access route for preparatory work to protect the SFP, etc., work to remove four sections of X-braces (one each on the west and south sides and two on the east side, respectively) started from September 19, 2018 and all planned four sections had been removed by December 20, 2018.
 - On March 6, 2019, the creation of an access route from the west working floor was completed and the floor opening was covered to prevent small rubble falling from the operating floor during the work.
 - From March 18, 2019, the removal of small rubble in the east-side area around the SFP started using pliers and suction equipment. From April 2, 2019, rubble removal in the same area started using a remote-controlled heavy machine.
 - As a space was created on the east side of the SFP for work in the succeeding process, e.g. to protect the SFP, the work will be shifted to the south-side area.
 - Using the above route, which allows partial access to the SFP from the east side around the SFP, investigation into obstacles inside the SFP using a water camera, etc. will be planned and implemented to formulate a future plan for SFP protection, etc.
 - To grasp the characteristics of dust generated during work to remove the fallen roof of the Reactor Building, the dust particle-diameter distribution was measured in the work environment and compared with that in the environment before work. The result of particle-diameter measurement during work showed no increase in the ratio of large particles and no significant variation in particle-diameter distribution was confirmed before and after the work.

Investigation of the Unit 1 well plug
- The well plug (a concrete lid placed on the upper lid of the PCV, comprising three layers (upper, intermediate and lower)) was misaligned from the normal position due to the influence of the hydrogen explosion at the time of the accident. Toward fuel removal from the spent fuel pool, the well plug will be investigated prior to examining how to handle it.
- In the investigation, two robots (for investigation and monitoring) will be inserted through the space between the upper and intermediate layers to take photos by a camera, measure the airborne radiation dose, etc. within the range that the robots can travel.
- A mockup test, etc. are currently underway. After removing small rubble around the opening, the investigation will start from mid-July 2019.

Main work to help spent fuel removal at Unit 2
- On November 6, 2018, before the investigation toward formulating a work plan to dismantle the Reactor Building rooftop, etc., work to move and contain the remaining objects on the operating floor (1st round) was completed.
- On February 1, 2019, an investigation to measure the radiation dose on the floor, walls and ceiling inside the operating floor confirmed the contamination status was completed. After analyzing the investigative results, the “contamination density distribution” throughout the entire operating floor was obtained, based on which the airborne radiation dose rate inside the operating floor could be evaluated. A shielding design and measures to prevent radioactive material scattering, etc. will be examined.
- From April 8, 2019, work to move and contain the remaining objects on the operating floor (2nd round) got underway, such as materials and equipment which may hinder fuel removal work. The 2nd round included placing the remaining
objects in the container and cleaning the floor to suppress dust scattering, all of which were not scheduled in the 1st round. The status of dust density, etc. is being monitored to steadily implement the work with safety first.

- An investigation inside the operating floor conducted during the period November 2018 – February 2019 confirmed that the air radiation dose was declining compared to the investigative result for the period 2011-2012.
- Based on this investigative result, it was considered that limited work could be implemented inside the operating floor.
- To reduce the risk of dust scattering while dismantling the building and ensure work could be implemented more securely and safely, methods, including an approach to access from the south side and minimize the scope of dismantling the upper part of the operating floor, are being examined.

- Main process to help fuel removal at Unit 3
 - Regarding the fuel-handling machine (FHM) and crane, consecutive defects have occurred since the test operation started on March 15, 2018.
 - On August 8, 2018, an alarm was issued during the pre-operation inspection of the FHM, whereupon operation was suspended. This was attributable to disconnection due to rainwater ingress corrosion into the cable connection. Abnormalities were also detected in several control cables.
 - On August 15, 2018, an alarm on the crane went off during work to clear materials and equipment and the crane operation was suspended.
 - On September 29, 2018, to determine the risks of defects in fuel-handling facilities, the FHM was temporarily recovered and a safety inspection (operation check and facility inspection) started. For 14 defects detected in the safety inspection, measures were completed on January 27, 2019.
 - On February 8, 2019, a function check after cable replacement was completed.
 - On February 14, 2019, review of recovery measures in the event of defects, etc. was held and training for fuel removal using dummy fuel and the transport container got underway. During the training, seven defects were detected, although it was confirmed that these did not constitute safety problems that could lead to fuel, rubble, etc. falling.
 - From March 15, 2019, the rubble removal training inside the pool started.
 - From April 15, 2019, removal of 514 spent fuel assemblies and 52 non-irradiated fuel assemblies (a total of 566 assemblies) stored in the spent fuel pool started. Seven non-irradiated fuel assemblies were then loaded in the transport container and transported to the common pool on April 23, 2019. The first fuel removal was completed on April 25, 2019.
 - After reviewing fuel removal on this occasion (improving procedures and facilities), work has begun to collect the removed rubble and training on removal is being provided toward the second removal using the transport container from July 2019 and subsequent removal work. The dust density in the surrounding environment, etc. is monitored on an ongoing basis and work implemented with safety first.

- Plan to dismantle the Unit 1/2 exhaust stack
 - On May 11, 2019, as part of preparation to dismantle the Unit 1/2 exhaust stack, the feasibility of installing mockup dismantling equipment on top of the exhaust stack was checked using a crane for dismantling. The check confirmed that the planned lifting length (the distance from the crane hook to the exhaust stack top) differed from the actual lifting length and underlined the need to extend the lifting height of the crane by raising the boom and jib after moving the crane closer.
 - To adjust the uneven ground for the crane operation, work to construct a roadbed got underway in June 2019. After a comprehensive operation test to confirm that the dismantling equipment could be installed at the top of the exhaust stack, work to dismantle the exhaust stack will start by around July 2019.

- Measures in response to material having fallen from the Unit 3/4 exhaust stack
 - In response to the detection of scaffold material having fallen from the Unit 3/4 exhaust stack on January 2019, zoning and entry restrictions were immediately implemented at four onsite exhaust stacks, including the area of the above stack and safe passages were installed within March 2019.
 - In addition, to check any similar risk of falling, photos were taken from the ground and an extraordinary inspection conducted using a drone. Although this detected degradation in some scaffold materials, it confirmed that they were not in a condition that may immediately lead to falling.

- Based on the results of a radiation dose investigation of the 3/4 exhaust stack and the central exhaust stack of Turbine Buildings conducted in April 2019, a policy for measures to reduce the falling risks of each exhaust stack will be planned by around the 1st half of FY2019.

3. Retrieval of fuel debris

- Work to create an access route for the internal investigation of the Unit 1 PCV
 - As part of work to create an access route prior to investigating the inside of the Primary Containment Vessel (PCV), the inner door of the X-2 penetration, which included doors through which workers entered or exited the PCV, was drilled (for about five minutes) on June 4, 2019. Monitoring data during the work showed that the dust density of the temporary monitor, which was installed in front of the filter to reduce the radioactive materials density, exceeded the criteria value set for work management. Work was suspended and data was checked and evaluated. A subsequent inspection confirmed that the value had declined to the density level before the work in several hours.
 - During the work on this occasion, the values of the permanent dust monitor, which was installed downstream of the filter, did not vary significantly, nor those around site boundaries, etc. and there was no influence on the environment. Work procedures will be examined, etc. to resume the work by around the end of July 2019 and implement the work with safety first.

4. Plans to store, process and dispose of solid waste and decommission of reactor facilities

Promoting efforts to reduce and store waste generated appropriately and R&D to facilitate adequate and safe storage, processing and disposal of radioactive waste

- Management status of the rubble and trimmed trees
 - As of the end of May 2019, the total storage volume of the concrete and metal rubble was approx. 271,200 m³ (+2,400 m³ compared to the end of April at an area-occupation rate of 68%). The total storage volume of trimmed trees was approx. 134,100 m³ (slight increase, with an area-occupation rate of 76%). The total storage volume of used protective clothing was approx. 55,400 m³ (+200 m³, with an area-occupation rate of 81%). The increase in rubble was mainly attributable to tank-related construction, while the increase in used protective clothing was attributable to acceptance of used protective clothing.

- Management status of secondary waste from water treatment
 - As of June 6, 2019, the total storage volume of waste sludge was 597 m³ (area-occupation rate: 85%), while that of concentrated waste fluid was 9,364 m³ (area-occupation rate: 91%). The total number of stored spent vessels, High-Integrity Containers (HICs) for multi-nuclide removal equipment, etc., was 4,393 (area-occupation rate: 69%).

- Plan to store and manage solid waste (June 2019 version)
 - The third revision of the “Plan to Store and Manage Solid Waste,” which was formulated in March 2016, was issued on June 27, 2019.

- The estimated generation amount, etc. was reviewed based on the latest storage results and the construction plan. However, the timing to complete the temporary storage of “rubble, etc.” (excluding that for recycling or reuse) remained within FY2028, i.e. unchanged since the first issue. Solid waste will continue to be minimized and stored in buildings to reduce risks even further.

5. Reduction in radiation dose and mitigation of contamination

Effective dose-reduction at site boundaries and purification of port water to mitigate the impact of radiation on the external environment

- Status of groundwater and seawater on the east side of Turbine Building Units 1-4
 - At No. 1-6, the H-3 density has been repeatedly declining and increasing since March 2018 and currently stands at around 1,400 Bq/L.
At No. 1-8, the H-3 density had been increasing from around 2,000 Bq/L since December 2018 and currently stands at around 3,900 Bq/L.

At No. 1-9, the density of gross β radioactive materials has been repeatedly increasing and declining around 20 Bq/L since April 2019 and currently stands at around 30 Bq/L.

At No. 1-12, the density of gross β radioactive materials had been increasing from around 200 Bq/L since December 2018 and currently stands at around 2,000 Bq/L. Since August 15, 2013, pumping of groundwater continued (at the well point between the Unit 1 and 2 intakes: August 15, 2013 – October 13, 2015 and from October 24; at the repaired well: October 14 - 23, 2015).

The densities of radioactive materials in drainage channels have remained constant, despite increasing during rainfall.

In the Unit 1-4 intake open channel area, densities of radioactive materials in seawater have remained below the legal discharge limit except for the increase in Cs-137 and Sr-90 during rain. They have also been declining following the completed installation and the connection of steel pipe sheet piles for the sea-side impermeable walls. The density of Cs-137 has been decreasing since March 20, 2019, when the silt fence was transferred to the center of the open channel.

In the area within the port, densities of radioactive materials in seawater have remained below the legal discharge limit, except for the increase in Cs-137 and Sr-90 during rain. They have been below the level of those in the Unit 1-4 intake open channel area and have been declining following the completed installation and connection of steel pipe sheet piles for the sea-side impermeable walls.

In the area outside the port, regarding the densities of radioactive materials in seawater, those of Cs-137 and Sr-90 declined and remained low after the installation and connection of steel pipe sheet piles for the sea-side impermeable walls were completed.

6. Outlook of the number of staff required and efforts to improve the labor environment and conditions

Securing appropriate staff long-term while thoroughly implementing workers’ exposure dose control. Improving the work environment and labor conditions continuously based on an understanding of workers’ on-site needs

Staff management

- The monthly average total of personnel registered for at least one day per month to work on site during the past quarter from February to April 2019 was approx. 9,300 (TEPCO and partner company workers), which exceeded the monthly average number of actual workers (approx. 6,900). Accordingly, sufficient personnel are registered to work on site.

- It was confirmed with the prime contractors that the estimated manpower necessary for the work in July 2019 (approx. 4,260 per day: TEPCO and partner company workers) would be secured at present. The average numbers of workers per day per month (actual values) were maintained, with approx. 3,400 to 5,600 since FY2017 (see Figure 7).

- The number of workers outside Fukushima Prefecture increased. The local employment ratio (TEPCO and partner company workers) as of May 2019 has remained constant at around 60%.

- The monthly average exposure dose of workers remained at approx. 0.39 mSv/month during FY2016, approx. 0.36 mSv/month during FY2017 and approx. 0.32 mSv/month during FY2018.

(Reference: Annual average exposure dose 20 mSv/year ≒ 1.7 mSv/month)

- For most workers, the exposure dose was sufficiently within the limit and allowed them to continue engaging in radiation work.
Status of heat stroke cases
- In FY2019, measures to further prevent heat stroke commenced from April to cope with the hottest season.
- In FY2019, no worker suffered heat stroke due to work up until June 24 (in FY2018, one worker up until the end of June). Continued measures will be taken to prevent heat stroke.

Status of spent fuel storage in Units 5 and 6
- Regarding Unit 5, fuel removal from the reactor was completed in June 2015. A total of 1,374 spent and 168 non-irradiated fuel assemblies, respectively, were stored in the spent fuel pool (storage capacity: 1,590 assemblies).
- Regarding Unit 6, fuel removal from the reactor was completed in November 2013. A total of 1,456 spent and 198 non-irradiated fuel assemblies (180 of which transferred from the Unit 4 spent fuel pool) are stored in the spent fuel pool (storage capacity: 1,654), while 230 non-irradiated fuel assemblies are stored in the storage facility of non-irradiated fuel assemblies (storage capacity: 230).

Status of contaminated water treatment in Units 5 and 6
- Contaminated water in Units 5 and 6 is transferred from Unit 6 Turbine Building to the outdoor tanks and sprinkled after undergoing oil separation and RO treatment and confirming the density of the radioactive materials.

The 4th International Forum on the Decommissioning of the Fukushima Daiichi Nuclear Power Station
- The 4th International Forum on the Decommissioning of the Fukushima Daiichi Nuclear Power Station will be held in Tomioka Town on August 4, 2019 and Iwaki City on August 5, 2019. (Organizer: Nuclear Damage Compensation and Decommissioning Facilitation Corporation)
- On Day 1, all participants will consider decommissioning and representatives from the local community will engage in frank dialog with technical experts. On Day 2, participants will discuss how to proceed with decommissioning together with the local community.

Basic concept to implement analysis and investigation related to decommissioning and contaminated water management as planned
- Based on advice from the International Atomic Energy Agency (IAEA) and international discussions related to the need for fuel debris analysis with future retrieval in mind, existing basic principles and concepts to implement decommissioning and contaminated water management, as already described in the Mid-and-Long-Term Roadmap and the Technical Strategic Plan for Decommissioning published by the Nuclear Damage Compensation and Decommissioning Facilitation Corporation (NDF), will be compiled under the theme of analysis and investigation to offer in activities by bilateral and multilateral frameworks, etc.

Figure 8: Changes in monthly individual worker exposure dose (monthly average exposure dose since March 2011)
Status of seawater monitoring within the port (comparison between the highest values in 2013 and the latest values)

"The highest value" → "the latest value (sampled during June 17-25)"; unit (Bq/L); ND represents a value below the detection limit.

Source: TEPCO website Analysis results on nuclides of radioactive materials around Fukushima Daiichi Nuclear Power Station http://www.tepco.co.jp/nu/fukushima/np/f1/smp/index-1.html

Summary of TEPCO data as of June 26, 2019

<table>
<thead>
<tr>
<th>Nuclide</th>
<th>Legal discharge limit</th>
<th>WHO Guidelines for Drinking Water Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cesium-134</td>
<td>60</td>
<td>10</td>
</tr>
<tr>
<td>Cesium-137</td>
<td>90</td>
<td>10</td>
</tr>
<tr>
<td>Strontium-90 (strongly correlate with Gross β)</td>
<td>30</td>
<td>10</td>
</tr>
<tr>
<td>Tritium</td>
<td>60,000</td>
<td>10,000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nuclide</th>
<th>Value</th>
<th>Date</th>
<th>Result</th>
<th>Unit</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cesium-134</td>
<td>3.3</td>
<td>(2013/10/17)</td>
<td>ND(0.24)</td>
<td>Below 1/10</td>
<td></td>
</tr>
<tr>
<td>Cesium-137</td>
<td>9.0</td>
<td>(2013/10/17)</td>
<td>1.2</td>
<td>Below 1/7</td>
<td></td>
</tr>
<tr>
<td>Gross β</td>
<td>74</td>
<td>(2013/8/19)</td>
<td>ND(17)</td>
<td>Below 1/4</td>
<td></td>
</tr>
<tr>
<td>Tritium</td>
<td>67</td>
<td>(2013/8/19)</td>
<td>ND(1.8)</td>
<td>Below 1/30</td>
<td></td>
</tr>
</tbody>
</table>

Chart Details

- **Port entrance**
- **South side in the port**
- **West side in the port**
- **North side in the port**
- **East side in the port**
- **Unit 1**
- **Unit 2**
- **Unit 3**
- **Unit 4**

Note: The gross β measurement values include natural potassium 40 (approx. 12 Bq/L). They also include the contribution of yttrium 90, which radioactively balance strontium 90.

*1: Monitoring commenced in or after March 2014. Monitoring inside the sea-side impermeable walls was finished because of the landfill.

*2: For the point, monitoring was finished from December 12, 2018 due to preparatory work for transfer of mega float.

*3: For the point, monitoring point was moved from February 6, 2019 due to preparatory work for transfer of mega float.

*4: For the point, monitoring was finished from April 3, 2019 due to preparatory work for transfer of mega float.
Status of seawater monitoring around outside of the port (comparison between the highest values in 2013 and the latest values)

Unit (Bq/L); ND represents a value below the detection limit; values in () represent the detection limit; ND (2013) represents ND throughout 2013

- **Northeast side of port entrance (offshore 1km)**
 - Cesium-134: ND (2013) → ND (0.74)
 - Cesium-137: ND (2013) → ND (0.50)
 - Gross β: ND (2013) → ND (19)
 - Tritium: ND (2013) → ND (0.79)

- **East side of port entrance (offshore 1km)**
 - Cesium-134: ND (2013) → ND (0.70)
 - Cesium-137: 1.6 (2013/10/18) → ND (0.59) Below 1/2
 - Gross β: ND (2013) → ND (19)
 - Tritium: 6.4 (2013/10/18) → ND (0.79) Below 1/8

- **North side of north breakwater (offshore 0.5km)**
 - Cesium-134: ND (2013) → ND (0.71)
 - Cesium-137: ND (2013) → ND (0.63)
 - Gross β: ND (2013) → ND (19)
 - Tritium: 4.7 (2013/8/18) → ND (0.79) Below 1/5

- **North side of Unit 5 and 6 release outlet**
 - Cesium-134: 1.8 (2013/6/21) → ND (0.82) Below 1/2
 - Cesium-137: 4.5 (2013/3/17) → ND (0.64) Below 1/7
 - Gross β: 12 (2013/12/23) → 10
 - Tritium: 8.6 (2013/6/26) → ND (0.83) Below 1/10

- **Southeast side of port entrance (offshore 1km)**
 - Cesium-134: ND (2013) → ND (0.83)
 - Cesium-137: ND (2013) → ND (0.74)
 - Gross β: ND (2013) → ND (19)
 - Tritium: ND (2013) → ND (0.79)

- **South side of south breakwater (offshore 0.5km)**
 - Cesium-134: ND (2013) → ND (0.80)
 - Cesium-137: 3.0 (2013/7/15) → ND (0.58) Below 1/5
 - Gross β: 15 (2013/12/23) → 10
 - Tritium: 1.9 (2013/11/25) → ND (0.83) Below 1/2

- **Near south release outlet**
 - Tritium: 0.79 (2013/11/25) → ND (0.79) Below 1/2

Sea side impermeable wall
Silt fence

Note: The gross β measurement values include natural potassium 40 (approx. 12 Bq/L). They also include the contribution of yttrium 90, which radioactively balance strontium 90.

Note: Because safety of the sampling points was unassured due to the influence of Typhoon No. 10 in 2016, samples were taken from approx. 330 m south of the Unit 1-4 release outlet. Samples were also taken from a point approx. 280 m south from the same release outlet from January 27, 2017 and approx. 320 m from March 23, 2018.

Summary of TEPCO data as of June 26, 2019

Progress toward decommissioning: Fuel removal from the spent fuel pool (SFP)

Unit 1
Regarding fuel removal from Unit 1 spent fuel pool, there is a plan to install a dedicated cover for fuel removal over the top floor of the Reactor Building (operating floor). On November 10, 2016, removal of all roof panels and wall panels of the building cover was completed. On May 11, 2017, removal of pillars and beams of the building cover was completed. On December 19, 2017, modification of the pillars and beams of the building cover and installation windbreak fences were completed. From March 18, 2019, removal of small rubble in the east-side area around the SFP started as an initial step using pliers and suction equipment. From April 2, 2019, rubble removal in the same area started using remote-controlled heavy machines.

Unit 2
Toward fuel removal and debris retrieval in the Unit 2 spent fuel pool, the scope of dismantling and modification of the existing Reactor Building rooftop is examined. Based on the investigative results inside the operating floor, etc., methods are being examined from the perspective of ensuring safety during work, controlling influence on the outside of the power station, and removing fuel rapidly to reduce risks.

In addition to Plan (1) in which the whole upper part of the operating floor is dismantled and the container of poor fuel is shared with debris retrieval and Plan (2) in which a cover for pool fuel retrieval is separately installed, a method which minimizes the range of dismantling the upper part of the operating floor and accesses from the south side is being examined.

Unit 3
Prior to the installation of a cover for fuel removal, removal of large rubble from the spent fuel pool was completed in November 2015. To ensure safe and steady fuel removal, training of remote control was conducted at the factory using the actual fuel-handling machine which will be installed on site (February – December 2015). Measures to reduce dose on the Reactor Building top floor (decontamination, shields) were completed in December 2016. Installation of a cover for fuel removal and a fuel-handling machine is underway from January 2017. Installation of the fuel removal cover was completed on February 23, 2018.

Toward fuel removal, the rubble retrieval training inside the pool, which was scheduled in conjunction with fuel removal training, started from March 15, 2019, and started fuel removal from April 15, 2019.

Unit 4
In the Mid- and Long-Term Roadmap, the target of Phase 1 involved commencing fuel removal from inside the spent fuel pool (SFP) of the 1st Unit within two years of completion of Step 2 (by December 2013). On November 18, 2013, fuel removal from Unit 4, or the 1st Unit, commenced and Phase 2 of the roadmap started.

On November 5, 2014, within a year of commencing work to fuel removal, all 1,331 spent fuel assemblies in the pool had been transferred. The transfer of the remaining non-irradiated fuel assemblies to the Unit 6 SFP was completed on December 22, 2014. (2 of the non-irradiated fuel assemblies were removed in advance in July 2012 for fuel checks)

This marks the completion of fuel removal from the Unit 4 Reactor Building. Based on this experience, fuel assemblies will be removed from Unit 1-3 pools.

<Status of the operating floor>

<Steps of rubble removal>

<Common pool>

Storage area

An open space will be maintained in the common pool (Transfer to the temporary cask custody area)

Progress to date
- The common pool has been restored to a condition allowing it to re-accommodate fuel to be handled (November 2012)
- Loading of spent fuel stored in the common pool to dry casks commenced (June 2013)
- Fuel removal from the Unit 4 spent fuel pool began to be received (November 2013 - November 2014)

<Temporary cask (2) custody area>

Operation commenced on April 12, 2013; from the cask storage building, transfer of 9 existing dry casks completed (May 27, 2013); fuel stored in the common pool sequentially transferred.

<Secretariat of the Team for Countermeasures for Decommissioning and Contaminated Water Treatment>

©Tokyo Electric Power Company Holdings, Inc. All Rights Reserved.
Progress toward decommissioning: Works to identify the plant status and toward fuel debris retrieval

Investigation into TIP Room of the Unit 1 Reactor Building

- To improve the environment for future investigations inside the PCV, etc., an investigation was conducted from September 24 to October 2, 2015 at the TIP Room (*1). (Due to high dose around the entrance in to the TIP Room, the investigation of dose rate and contamination distribution was conducted through a hole drilled from the walkway of the Turbine Building, where the dose was low)
- The investigative results identified high dose at X-31 to 33 penetrations (*2) (instrumentation penetration) and low dose at other parts.
- As it was confirmed that work inside the TIP room would be available, the next step will include identification of obstacles which will interfere the work inside the TIP Room and formulation of a plan for dose reduction.

Unit 1

Air dose rate inside the Reactor Building:
Max. 5,150mSv/h (1F southeast area) (measured on July 4, 2012)

Nitrogen injection flow rate into the RPV (*3):
27.73Nm³/h

SFP / temperature: 28.8℃

Data as of 5:00, June 23 due to suspension of the system for work

PCV hydrogen concentration
System A: 0.00 vol%,
System B: 0.00 vol%

Temperature inside the PCV:
approx. 22℃

Investigation in the leak point detected in the upper part of the Unit 1 Suppression Chamber (S/C (*3))
Investigation in the leak point detected in the upper part of Unit 1 S/C from May 27, 2014 from one expansion joint cover among the lines installed there. As no leakage was identified from other parts, specific methods will be examined to halt the flow of water and repair the PCV.

Status of investigation inside the PCV
Prior to fuel debris retrieval, an investigation inside the PCV will be conducted to inspect the status there including the location of fuel debris.

[Investigative outline]
- In April 2015, a device, which entered the inside of the PCV through a narrow access opening (bore: φ 100 mm), collected information such as images and airborne dose inside the PCV 1st floor.
- In March 2017, the investigation using a self-propelled investigation device, conducted to inspect the spreading of debris to the basement floor outside the pedestal, took images of the PCV bottom status for the first time. The status inside the PCV will continue to be examined based on the collected image and dose data.

Investigations inside PCV

<table>
<thead>
<tr>
<th>Period</th>
<th>Evaluation results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feb - May 2015</td>
<td>Confirmed that there was no large fuel in the reactor core.</td>
</tr>
</tbody>
</table>

<Image of investigation inside the PCV>

Capturing the location of fuel debris inside the reactor by measurement using muons

<Image near the bottom>

©Tokyo Electric Power Company Holdings, Inc. All Rights Reserved.
Installation of an RPV thermometer and permanent PCV supervisory instrumentation

(1) Replacement of the RPV thermometer
 • As the thermometer installed at the Unit 2 RPV bottom after the earthquake had broken in February 2014, it was excluded from the monitoring thermometers.
 • In April 2014, removal of the broken thermometer failed and was suspended. Rust-stripping chemicals were injected and the broken thermometer was removed in January 2015. A new thermometer was reinstalled in March. The thermometer has been used as a part of permanent supervisory instrumentation since April.
 • Some of the permanent supervisory instrumentation for PCV could not be installed in the planned locations due to interference with existing grating (August 2013). The instrumentation was removed in May 2014 and new instruments were reinstalled in June 2014. The trend of added instrumentation will be monitored for approx. one month to evaluate its validity.
 • The measurement during the installation confirmed that the water level inside the PCV was approx. 300mm from the bottom.

Investigative results on torus chamber walls

- The torus chamber walls were investigated (on the north side of the east-side walls) using equipment specially developed for that purpose (a swimming robot and a floor traveling robot).
- At the east-side wall pipe penetrations (five points), "the status and "existence of flow" were checked.
- A demonstration using the above two types of underwater wall equipment showed how the equipment could check the status of penetration.
- Regarding Penetrations 1 - 5, the results of checking the sprayed tracer (13C) by camera showed no flow around the penetrations. (investigation by the swimming robot)
- Regarding Penetration 3, a sonar check showed no flow around the penetrations. (investigation by the floor traveling robot)

Status of investigation inside the PCV

Prior to fuel debris retrieval, an investigation inside the PCV will be conducted to inspect the status there including the location of fuel debris.

[Investigative outline]
- Investigative devices such as a robot will be injected from Unit 2 X-6 penetration (13C) and access the inside of the pedestal using the CRD rail.

<table>
<thead>
<tr>
<th>Investigations inside PCV</th>
<th>Evaluation results</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st (Jan 2012)</td>
<td>- Acquiring images - Measuring air temperature</td>
</tr>
<tr>
<td>2nd (Mar 2012)</td>
<td>- Confirming water surface - Measuring water temperature - Measuring dose rate</td>
</tr>
<tr>
<td>3rd (Feb 2013 – Jun 2014)</td>
<td>- Acquiring images - Sampling contaminated water - Measuring water level - Installing permanent monitoring instrumentation</td>
</tr>
<tr>
<td>4th (Jan – Feb 2017)</td>
<td>- Acquiring images - Measuring dose rate - Measuring air temperature</td>
</tr>
</tbody>
</table>

Leakage points from PCV
- No leakage from torus chamber rooftop
- No leakage from all inside/outside surfaces of S/C

©Tokyo Electric Power Company Holdings, Inc. All Rights Reserved.
Water flow was detected from the Main Steam Isolation Valve* room

On January 18, 2014, a flow of water from around the door of the Steam Isolation Valve room in the Reactor Building Unit 3 1st floor northeast area to the nearby floor drain tunnel (drain outlet) was detected. As the drain outlet connects with the underground part of the Reactor Building, there is no possibility of outflow from the building.

From April 23, 2014, image data has been acquired by camera and the radiation dose measured via pipes for measurement instrumentation, which connect the air-conditioning room on the Reactor Building 2nd floor with the Main Steam Isolation Valve Room on the 1st floor.

This is the first leak from PCV detected in the Unit 3. Based on the images collected in this investigation, the leak volume will be estimated and the need for additional investigations will be examined. The investigative results will also be utilized to examine water stoppage and PCV repair methods.

* Main Steam Isolation Valve: A valve to shut off the steam generated from the Reactor in an emergency

Investigative results into the Unit 3 PCV equipment hatch using a small investigation device

- As part of the investigation into the PCV to facilitate fuel debris retrieval, the status around the Unit 3 PCV equipment hatch was investigated using a small self-traveling investigation device on November 26, 2015.
- Given blots such as rust identified below the water level inside the PCV, there may be a leakage from the seal to the extent of bleeding.
- Methods to investigate and repair the parts, including other PCV penetrations with a similar structure, will be considered.

Investigation inside the PCV

Prior to fuel debris retrieval, the inside of the Primary Containment Vessel (PCV) was investigated to identify the status there including the location of the fuel debris.

- The status of X-53 penetration(*4), which may be under the water and which is scheduled for use to investigate the inside of the PCV, was investigated using remote-controlled ultrasonic test equipment. The results showed that the penetration was not under the water (October 22-24, 2014).
- For the purpose of confirming the status inside the PCV, an investigation device was inserted into the PCV from X-53 penetration on October 20 and 22, 2015 to obtain images, data of dose and temperature and sample contaminated water.
- No damage was identified on the structure and walls inside the PCV and the water level was almost identical with the estimated value. In addition, the dose inside the PCV was confirmed to be lower than in other Units.
- In July 2017, the inside of the PCV was investigated using the underwater ROV (remotely operated underwater vehicle) to inspect the inside of the pedestal.
- Analysis of image data obtained in the investigation identified damage to multiple structures and the supposed core internals. Consideration about fuel removal based on the obtained information will continue.
- Videos obtained in the investigation were reproduced in 3D. Based on the reproduced images, the relative positions of the structures, such as the rotating platform slipping off the rail with a portion buried in deposits, were visually understood.

Capturing the location of fuel debris inside the reactor by measurement using muons

<table>
<thead>
<tr>
<th>Period</th>
<th>Evaluation results</th>
</tr>
</thead>
<tbody>
<tr>
<td>May – Sep 2017</td>
<td>The evaluation confirmed that no large lump existed in the core area where fuel had been placed and that part of the fuel debris potentially existed at the bottom of the RPV.</td>
</tr>
</tbody>
</table>

<Glossary>

(*) SFP (Spent Fuel Pool) (*2) RPV (Reactor Pressure Vessel) (*3) PCV (Primary Containment Vessel) (*4) Penetration: Through-hole of the PCV
Work to improve the reliability of the circulation water injection cooling system and pipes to transfer contaminated water.

- Operation of the reactor water injection system using Unit 3 Condensate Storage Tank (CST) as a water source commenced (from July 5, 2013). Compared to the previous systems, the reliability of the reactor water injection system was enhanced, e.g. by increasing the amount of water-source storage and enhancing durability.
- To reduce the risk of contaminated-water leakage, the circulation loop was shortened by installing a reverse osmosis (RO) device in the Unit 4 Turbine Building within the circulation loop, comprising the transfer of contaminated water, water treatment and injection into the reactors. Operation of the installed RO device started from October 7 and 24 (RO equipment started from October 7 and 24)
- To accelerate efforts to reduce the density of contaminated water in the buildings, circulating purification of contaminated water inside the buildings started on the Unit 3 and 4 side on February 22 and on the Unit 1 and 2 side on April 11.
- For circulating purification, a new pipe (contaminated water purification line) divided from the water treatment equipment outlet line was installed to transfer water purified at the water treatment equipment to the Unit 1 Reactor Building and the Unit 2-4 Turbine Buildings.
- The risks of contaminated water inside the buildings will continue to be reduced in addition to reduction of its storage.

* The entire length of contaminated water transfer pipes is approx. 2.1 km, including the transfer line of surplus water to the upper heights (approx. 1.3 km).

Progress status of dismantling of flange tanks

- To facilitate replacement of flanged tanks, dismantling of flanged tanks started in H1 east/H2 areas in May 2015. Dismantling of all flanged tanks was completed in H1 east area (12 tanks) in October 2015, in H2 area (28 tanks) in March 2016, in H4 area (56 tanks) in May 2017, in H3 B area (31 tanks) in September 2017, in H5 and H5 north areas (31 tanks) in June 2018, in G6 area (38 tanks) in July 2018, H6 and H6 north areas (24 tanks) in September 2018 and G4 south area (17 tanks) in March 2019.

Completion of purification of contaminated water (RO concentrated salt water)

- Contaminated water (RO concentrated salt water) is being treated using seven types of equipment including the multi-nuclide removal equipment (ALPS). Treatment of the RO concentrated salt water was completed on May 27, 2015, with the exception of the remaining water at the tank bottom. The remaining water will be treated sequentially toward dismantling the tanks. The strontium-treated water from other facilities than the multi-nuclide removal equipment will be re-purified in the multi-nuclide removal equipment to further reduce risks.

Preventing groundwater from flowing into the Reactor Buildings

Reducing groundwater inflow by pumping sub-drain water

- To reduce groundwater flowing into the buildings, pumping-up of groundwater from wells (subdrains) around the buildings started on September 3, 2015. Pumped-up groundwater was purified at dedicated facilities and released after TEPCO and a third-party organization confirmed that its quality meets operational targets.

Measures to pump up groundwater flowing from the mountain side upstream of the Building to reduce the groundwater inflow (groundwater bypass) have been implemented. The pumped up groundwater is temporarily stored in tanks and released after TEPCO and a third-party organization have confirmed that its quality meets operational targets.

Through periodical monitoring, pumping of wells and tanks is operated appropriately. At the observation holes installed at a height equivalent to the buildings, the trend showing a decline in groundwater levels is checked.

The analytical results on groundwater inflow into the buildings based on existing data showed a declining trend.

Installing land-side impermeable walls with frozen soil around Units 1-4 to prevent the inflow of groundwater into the building

To prevent the inflow of groundwater into the buildings, installation of impermeable walls on the land side is planned. Freezing started on the sea side and at a part of the mountain side from March 2016 and at 95% of the mountain side from June 2016. Freezing of the remaining unfrozen sections advanced with a phased approach and freezing of all sections started in August 2017.

In March 2018, construction of the land-side impermeable walls was completed, except for a portion of the depth, based on a monitoring result showing that the underground temperature had declined below 0°C in almost all areas, while on the mountain side, the difference between the inside and outside increased to approximate 4-5 m. The 21st Committee on Countermeasures for Contaminated Water Treatment, held on March 7, 2016, evaluated that together with the function of sub-drains, etc., a water-level management system to stably control groundwater and isolate the buildings from it had been established and had allowed a significant reduction in the amount of contaminated water generated.

For the unfrozen depth, a supplementary method was implemented and it was confirmed that temperature of the part declined below 0°C from September 2018. From February 2019, maintenance operation started at all sections.

©Tokyo Electric Power Company Holdings, Inc. All Rights Reserved.
Progress toward decommissioning: Work to improve the environment within the site

Immediate targets

- Reduce the effect of additional release from the entire power station and radiation from radioactive waste (secondary water treatment waste, rubble, etc.) generated after the accident, to limit the effective radiation dose to below 1mSv/year at the site boundaries.
- Prevent contamination expansion in sea, decontamination within the site

Optimization of radioactive protective equipment

Based on the progress of measures to reduce environmental dosage on site, the site is categorized into two zones: highly contaminated area around Unit 1-4 buildings, etc. and other areas to optimize protective equipment according to each category aiming at improving safety and productivity by reducing load during work.

From March 2016, limited operation started. From March and September 2017, the G Zone was expanded.

Installation of dose-rate monitors

To help workers in the Fukushima Daiichi Nuclear Power Station precisely understand the conditions of their workplaces, a total of 86 dose-rate monitors were installed by January 4, 2016.

These monitors allow workers to confirm real time on-site dose rates at their workplaces.

Workers are also able to check concentrated data through large-scale displays installed in the Main Anti-Earthquake Building and the access control facility.

Installation of sea-side impermeable walls

To prevent the outflow of contaminated water into the sea, sea-side impermeable walls have been installed.

Following the completed installation of steel pipe sheet piles on September 22, 2015, connection of these piles was conducted and connection of sea-side impermeable walls was completed on October 26, 2015. Through these works, closure of sea-side impermeable walls was finished and the contaminated water countermeasures have been greatly advanced.

Status of the large rest house

A large rest house for workers was established and its operation commenced on May 31, 2015.

Spaces in the large rest house are also installed for office work and collective worker safety checks as well as taking rest.

On March 1, 2016 a convenience store opened in the large rest house. On April 11, operation of the shower room started. Efforts will continue to improve convenience of workers.