Main decommissioning work and steps

Fuel removal from the Unit 4 SFP was completed on December 22, 2014 and removal from the Unit 3 SFP is underway from April 15, 2019. Dust density in the surrounding environment is being monitored and work is being implemented with safety first. Work continues sequentially toward the start of fuel removal from Units 1 and 2 and debris retrieval from Units 1-3.

Unit 1: Fuel removal scheduled to start in FY2023
Unit 2: Fuel removal scheduled to start in FY2023
Unit 3: Fuel removal scheduled to start around mid-FY2018*
Unit 4: Fuel removal completed in 2014

* Fuel removal started from April 15, 2019.

Countermeasures for contaminated water are implemented in accordance with the following three principles:

1. **Eliminate** contamination sources
 - Multi-nuclide removal equipment, etc.
 - Remove contaminated water from the trench (Note 3)
 (Note 3) Underground tunnel containing pipes.

2. **Isolate** water from contamination
 - Pump up groundwater for bypass
 - Pump up groundwater near buildings
 - Land-side impermeable walls
 - Waterproof pavement

3. **Prevent leakage** of contaminated water
 - Enhance soil by adding sodium silicate
 - Sea-side impermeable walls
 - Increase the number of (welded-joint) tanks

Three principles behind contaminated water countermeasures

- **Eliminate** contamination sources
- **Isolate** water from contamination
- **Prevent leakage** of contaminated water

Multi-nuclide removal equipment (ALPS), etc.
- This equipment removes radionuclides from the contaminated water in tanks and reduces risks.
- Treatment of contaminated water (RO concentrated salt water) was completed in May 2015 with multi-nuclide removal equipment, additional multi-nuclide removal equipment installed by TEPCO (operation commenced in September 2014) and a Japanese Government subsidy project (operation commenced in October 2014).
- Strontium-treated water from equipment other than ALPS is being re-treated in ALPS.

Reducing generation of contaminated water through multi-layered measures
- Multi-layered measures are implemented to reduce the inflow of rainwater and groundwater into buildings.
- Multi-layered contaminated water management measures, including land-side impermeable walls and subsurfaces, have kept the groundwater level low stable. The increase in contaminated water generation during rainfall is being suppressed by repairing damaged parts of building roofs, facing onsite, etc.
- Through these measures, the generation of contaminated water was reduced from approx. 470 m³/day (in FY2014) to approx. 170 m³/day (in FY2018).
- The groundwater level around Unit 1-4 Reactor Buildings will continue to be maintained at a low level through steady operation of land-side impermeable walls. In addition, measures to prevent rainwater inflow, including repairing damaged parts of building roofs and facing, continue to further reduce the generation of contaminated water.

Replacing flanged tanks with welded-joint tanks
- Replacement of flanged tanks with more reliable welded-joint tanks is underway.
- Strontium-treated water stored in flanged tanks was purified and transferred to welded-joint tanks. The transfer was completed in November 2018. Transfer of ALPS-treated water was completed in March 2019.

Toward fuel removal from the spent fuel pool

Towards fuel removal from the Unit 3 SFP, the multi-nuclide removal training, which was scheduled in conjunction with fuel removal training, started from March 15, 2019 and fuel removal started from April 15.

As measures to reduce the dose on the Reactor Building operating floor, deconstruction and installation of shields were completed in June and December 2016, respectively. Installation of a fuel removal cover started in January 2017 and installation of all dome roofs was completed in February 2018.
Progress Status and Future Challenges of the Mid-and-Long-Term Roadmap toward Decommissioning of TEPCO Holdings Fukushima Daiichi Nuclear Power Station (Outline)

Progress status

The temperatures of the Reactor Pressure Vessel (RPV) and Primary Containment Vessel (PCV) of Units 1-3 have been maintained within the range of approx. 15-25°C over the past month. There was no significant change in the density of radioactive materials newly released from Reactor Buildings into the air. It was concluded that the comprehensive cold shutdown condition had been maintained.

1. The values varied somewhat, depending on the unit and location of the thermometer.
2. In April 2019, the radiation exposure dose due to the release of radioactive materials from the Unit 1-4 Reactor Buildings was evaluated at less than 0.00022 mSv/year at the site boundary. The annual radiation dose from natural radiation is approx. 2.1 mSv/year (average in Japan).

* The values varied somewhat, depending on the unit and location of the thermometer.

Detection of inflow parts to the Onsite Bunker Building

For the Onsite Bunker Building, where inflow had continued since mid-November 2018, a groundwater inflow from the side inner surface of the funnel was detected on May 23 in the maintenance area on the basement 1st floor.

To investigate any inflow routes other than the above, a camera was inserted into the drain pipe from the drain sump tank side and inflow from the direction of the detected inflow part was confirmed. Based on the analytical result showing almost identical inflow and outflow amounts from the side inner surface of the funnel and to the drain sump tank respectively, it was assumed that the detected inflow part was the inflow source.

For this part, measures such as closure will be examined.

Amendment of timing to start dismantling the Unit 1/2 exhaust stack

On May 11, as part of preparation to dismantle the Unit 1/2 exhaust stack, the availability to install the mockup dismantling equipment on the top of the exhaust stack was checked using a crane for dismantling. The check confirmed that the planned lifting length differed from the actual lifting length and underlined the need for additional work such as raising the boom after moving the crane closer.

A method that can ensure safety work will be selected, taking the influence on the process and the decommissioning work into consideration and implemented with safety first.

* The distance from the crane hook to the exhaust stack top

Test to suspend water injection to Unit 2 reactor

To optimize the emergency response procedures, etc., a test involving temporarily suspending water injection to the reactor (3.0 to 0.0 m³/h) was conducted on May 13 (and terminated on May 24).

The test confirmed that the temperature increase rate at the RPV bottom was at the same level of 0.2°C/h or less as expected and that the temperatures at the RPV bottom and inside the PCV during the test also varied almost within expectations.

No abnormality was detected in other parameters such as the dust density. The difference between the prediction data and the test data and the behavior variation depending on the location where the thermometer was installed will be evaluated to utilize the results in optimizing emergency response procedures, etc.

Changes in RPV bottom temperature during the test to suspend water injection to the reactor

Inspection of the condition inside the X-2 penetration toward the internal investigation of Unit 1 PCV

As part of work to create an access route for the internal investigation of the Primary Containment Vessel (PCV), drilling was completed at three points on the outer door of the X-2 penetration.

An inspection of the condition inside the X-2 penetration detected a deposit in front of the inner door, which was supposed to be stripped paint from the inner surface. Examination to understand its characteristics is underway.

In readiness to commence drilling of the inner door from early June, a portion of the deposit will be removed to install the drilling equipment.

Start of examination about the method for fuel removal from the Unit 2 operating floor south side opening

Before formulating the work plan toward fuel removal at Unit 2, an investigation inside the operating floor was conducted during the period November 2018 – February 2019 and it was confirmed that the air radiation dose was declining compared to the investigative result for the period 2011-2012.

Based on this investigative result, it was considered that limited work could be implemented inside the operating floor. To reduce the risk of dust scattering while dismantling the building and ensure work could be implemented more safely and securely, methods, including minimizing the scope of dismantling the upper part of the operating floor and accesses from the south side, are being examined.

Transfer of the mega float into the Unit 1-4 intake open channel

Toward reducing the risk of tsunami, work to transfer the mega float is underway. A defense embankment was installed to protect the sea-side impermeable walls before transferring the mega float. Following the installation, the mega float was transferred into the Unit 1-4 intake open channel by May 16. Treatment of ballast water and decontamination inside the mega float and work to create a bottom-seated mound also commenced.

The environmental monitoring within the port, which continued throughout and after the transfer work, detected no significant variation to date.

Work will continue with safety first to complete the measures for reduction of tsunami risk in the 1st half of FY2020.

Image of fuel removal methods

For the Onsite Bunker Building, where inflow had continued since mid-November 2018, a groundwater inflow from the side inner surface of the funnel was detected on May 23 in the maintenance area on the basement 1st floor.

To investigate any inflow routes other than the above, a camera was inserted into the drain pipe from the drain sump tank side and inflow from the direction of the detected inflow part was confirmed. Based on the analytical result showing almost identical inflow and outflow amounts from the side inner surface of the funnel and to the drain sump tank respectively, it was assumed that the detected inflow part was the inflow source.

For this part, measures such as closure will be examined.

Image of fuel removal methods

Amendment of timing to start dismantling the Unit 1/2 exhaust stack

On May 11, as part of preparation to dismantle the Unit 1/2 exhaust stack, the availability to install the mockup dismantling equipment on the top of the exhaust stack was checked using a crane for dismantling. The check confirmed that the planned lifting length differed from the actual lifting length and underlined the need for additional work such as raising the boom after moving the crane closer.

A method that can ensure safety work will be selected, taking the influence on the process and the decommissioning work into consideration and implemented with safety first.

* The distance from the crane hook to the exhaust stack top

Image of fuel removal methods

Test to suspend water injection to Unit 2 reactor

To optimize the emergency response procedures, etc., a test involving temporarily suspending water injection to the reactor (3.0 to 0.0 m³/h) was conducted on May 13 (and terminated on May 24).

The test confirmed that the temperature increase rate at the RPV bottom was at the same level of 0.2°C/h or less as expected and that the temperatures at the RPV bottom and inside the PCV during the test also varied almost within expectations.

No abnormality was detected in other parameters such as the dust density. The difference between the prediction data and the test data and the behavior variation depending on the location where the thermometer was installed will be evaluated to utilize the results in optimizing emergency response procedures, etc.

Changes in RPV bottom temperature during the test to suspend water injection to the reactor

Inspection of the condition inside the X-2 penetration toward the internal investigation of Unit 1 PCV

As part of work to create an access route for the internal investigation of the Primary Containment Vessel (PCV), drilling was completed at three points on the outer door of the X-2 penetration.

An inspection of the condition inside the X-2 penetration detected a deposit in front of the inner door, which was supposed to be stripped paint from the inner surface. Examination to understand its characteristics is underway.

In readiness to commence drilling of the inner door from early June, a portion of the deposit will be removed to install the drilling equipment.
We improved the measurement conditions of monitoring posts 2 to 8 to measure the air-dose rate precisely. Construction work, such as tree-clearing, surface soil removal and shield wall setting, were implemented from February 10 to April 18, 2012. Therefore, monitoring results at these points are lower than elsewhere in the power plant site.

The radiation shielding panels around monitoring post No. 6, which is one of the instruments used to measure the radiation dose at the power station site boundary, were taken off from July 10-11, 2013, since further deforestation, etc. had caused the surrounding radiation dose to decline significantly.
I. Confirmation of the reactor conditions

1. Temperatures inside the reactors

Through continuous reactor cooling by water injection, the temperatures of the Reactor Pressure Vessel (RPV) bottom and the Primary Containment Vessel (PCV) gas phase were maintained within the range of approx. 15 to 25°C for the past month, though varied depending on the unit and location of the thermometer.

2. Release of radioactive materials from the Reactor Buildings

As of April 2019, the density of radioactive materials newly released from Reactor Building Units 1-4 into the air and measured at the site boundary was evaluated at approx. 2.0×10^{-2} and 2.4×10^{-2} Bq/cm³ for Cs-134 and -137 respectively, while the radiation exposure dose due to the release of radioactive materials there was less than 0.00022 mSv/year.

- Following the steady implementation of “isolation” measures (groundwater bypass, subdrains, land-side impermeable walls, etc.), the inflow reduced from approx. 470 m³/day (the FY2014 average) when the measures were first launched to approx. 170 m³/day (the FY2018 average), though it varied depending on rainfall, etc.
- Measures will continue to further reduce the volume of contaminated water generated.

In accordance with the three principles “eliminate” contamination sources, “isolate” water from contamination and “prevent leakage” of contaminated water, multi-layered contaminated water management measures have been implemented to stably control groundwater.

- Status of contaminated water generated
 - Multi-layered measures, including pumping up by subdrains and land-side impermeable walls, which were implemented to control the continued generation of contaminated water, reduced the groundwater inflow into buildings.

- Operation of the groundwater bypass
 - From April 9, 2014, the operation of 12 groundwater bypass pumping wells commenced sequentially to pump up groundwater. The release then started from May 21, 2014, in the presence of officials from the Intergovernmental Liaison Office for the Decommissioning and Contaminated Water Issue of the Cabinet Office. Up until May 28, 2019, 469,338 m³ of groundwater had been released. The pumped-up groundwater was temporarily stored in tanks and released after TEPCO and a third-party organization had confirmed that its quality met operational targets.
 - Pumps are inspected and cleaned as required based on their operational status.

- Water Treatment Facility special for Subdrain & Groundwater drains
 - To reduce the level of groundwater flowing into the buildings, work began to pump up groundwater from wells (subdrains) around the buildings on September 3, 2015. The pumped-up groundwater was then purified at dedicated facilities and released from September 14, 2015, in the presence of officials from the Intergovernmental Liaison Office for the Decommissioning and Contaminated Water Issue of the Cabinet Office. Up until May 28, 2019, a total of 685,798 m³ had been drained after TEPCO and a third-party organization had confirmed that its quality met operational targets.
 - Due to the rising water level of the groundwater drain pond after the sea-side impermeable walls had been closed, pumping started on November 5, 2015. Up until May 28, 2019, a total of approx. 200,592 m³ had been pumped up and a volume of under 10 m³/day is being transferred from the groundwater drain to the Turbine Buildings (average for the period April 18 – May 22, 2019).
scheduled was completed, which went into operation from December 26, 2018 (3 of 3 pits went into operation).

- To eliminate the need to suspend water pumping while cleaning the subdrain transfer pipe, the pipe will be duplicated. Installation of the pipe and ancillary facilities was completed.

- Since the subdrains went into operation, the inflow into buildings tended to decline to under 150 m³/day when the subdrain water level declined below T.P. 3.0 m, but increased during rainfall.

Operation of multi-nuclide removal equipment

- Regarding the multi-nuclide removal equipment (existing and high-performance), hot tests using radioactive water were underway (for existing equipment, System A: from March 30, 2013, System B: from June 13, 2013, System C: from September 27, 2013; and for high-performance equipment, from October 18, 2014). The additional multi-nuclide removal equipment went into full-scale operation from October 16, 2017.

- As of May 23, 2019, the volumes treated by existing additional and high-performance multi-nuclide removal equipment were approx. 409,000, 554,000 and 103,000 m³, respectively (including approx. 9,500 m³ stored in the J1(D) tank, which contained water with highly concentrated radioactive materials at the System B outlet of the existing multi-nuclide removal equipment).

- To reduce the risks of strontium-treated water, treatment using existing, additional and high-performance multi-nuclide removal equipment has been underway (existing: from December 4, 2015; additional: from May 27, 2015; high-performance: from April 15, 2015). Up until May 23, 2019, approx. 592,000 m³ had been treated.

Toward reducing the risk of contaminated water stored in tanks

- Treatment measures comprising the removal of strontium by cesium-adsorption apparatus (KURION) (from January 6, 2015) and the secondary cesium-adsorption apparatus (SARRY) (from December 26, 2014) have been underway. Up until May 23, 2019, approx. 519,000 m³ had been treated.

Measures in the Tank Area

- Rainwater, under the release standard and having accumulated within the fenced-in area of the contaminated water tank area, was sprinkled on site after eliminating radioactive materials using rainwater-treatment equipment since May 21, 2014 (as of May 27, 2019, a total of 126,650 m³).

Figure 2: Correlation between inflow such as groundwater and rainwater into buildings and the water level of Unit 1-4 subdrains

- **Construction status of the land-side impermeable walls and status of groundwater levels around the buildings**
 - An operation to maintain the land-side impermeable walls and prevent the frozen soil from thickening further continued from May 2017 on the north and south sides and started from November 2017 on the east side, where frozen soil of sufficient thickness was identified. The scope of the maintenance operation was expanded in March 2018.
 - In March 2018, construction of the land-side impermeable walls was completed, except for a portion of the depth, based on a monitoring result showing that the underground temperature had declined below 0°C in almost all areas, while on the mountain side, the difference between the inside and outside increased to approx. 4.5 m. The 21st Committee on Countermeasures for Contaminated Water Treatment, held on March 7, 2018, evaluated that together with the function of subdrains, etc., a water-level management system to stably control groundwater and isolate the buildings from it had been established and had allowed a significant reduction in the amount of contaminated water generated.
 - A supplementary method was implemented for the unfrozen depth and it was confirmed that the temperature of this portion had declined below 0°C by September 2018. From February 2019, maintenance operation started at all sections.
 - The groundwater level in the area inside the land-side impermeable walls has been declining every year. On the mountain side, the difference between the inside and outside increased to approx. 4.5 m. The water level in the bank area has remained low (T.P. 1.6-1.7 m) compared to the ground surface (T.P. 2.5 m).

Figure 3: Closure of part of the land-side impermeable walls (on the mountain side)

Figure 4: Status of contaminated water storage

*Values in the figure indicate extension of each freezing section

*Water amount for which the water level gauge indicates 3% or more
*To detect storage increases more accurately, the calculation method was revised as follows from February 9, 2017: (The revised method was applied from March 15, 2018)
Inflow of groundwater (rainwater in buildings) + (transfer) + (chemical injection into ALPS)

*Values in the figure indicate extension of each freezing section

*Figures:**

1. Construction status of the land-side impermeable walls and status of groundwater levels around the buildings
2. Operation of multi-nuclide removal equipment
3. Measures in the Tank Area
4. Status of contaminated water storage
Investigation status into inflow parts at the Onsite Bunker Building

- For the Onsite Bunker Building, where an inflow had continued since mid-November 2018, a groundwater inflow from the side inner surface of the funnel was detected on May 23, 2019 in the maintenance area on the basement 1st floor.
- To investigate any inflow routes other than the above, a camera was inserted into the drain pipe from the drain sump tank side and inflow from the direction of the detected inflow part was confirmed.
- Based on the analytical result showing almost identical inflow and outflow amounts from the side inner surface of the funnel and to the drain sump tank respectively, it was assumed that the detected inflow part was the inflow source.
- For this part, measures such as closure will be examined.

Future plan for α nuclide in contaminated water in the buildings

- As part of efforts to treat contaminated water in the Reactor Buildings (R/Bs), the tendency of α nuclide in contaminated water in the buildings was investigated. The density of gross α radioactivity in contaminated water in the Unit 2 and 3 R/Bs (torus chambers) was measured from early 2019 and the result showed a relatively high density. The density of gross α radioactivity in the water treatment equipment in the rear stage remained at the same level as in the past.
- To smoothly facilitate contaminated water treatment, including α nuclides, measurement of gross α radioactivity density will be enhanced. An analysis to understand the characteristics of α nuclide will also be conducted for examination, including the need to improve the contaminated water treatment equipment.

2. Fuel removal from the spent fuel pools

Work to help remove spent fuel from the pool is progressing steadily while ensuring seismic capacity and safety. The removal of spent fuel from the Unit 4 pool commenced on November 18, 2013 and was completed by December 22, 2014

Main work to help spent fuel removal at Unit 1

- The installation of windbreak fences, which will reduce the amount of dust scattering during rubble removal, started on October 31, 2017 and was completed by December 19, 2017.
- From January 22, 2018, as work to prepare for fuel removal from the spent fuel pool, work began to remove rubble on the north side of the operating floor. Rubble is being carefully removed by suction equipment. No significant variation was identified around the site boundaries, where the density of radioactive materials was monitored and at onsite dust monitors during the above removal work. Once removed, the rubble is stored in solid waste storage facilities or other storage areas depending on the dose level.
- Before formulating a plan to remove rubble around the spent fuel pool, an onsite investigation started from July 23, 2018 and was completed on August 2, 2018.
- To create an access route for preparatory work to protect the spent fuel pool, etc., work to remove four sections of X-braces (one each on the west and south sides and two on the east side, respectively) started from September 19, 2018 and all planned four sections had been removed by December 20, 2018.
- On March 6, 2019, the creation of an access route from the west working floor was completed and the floor opening was covered to prevent small rubble falling from the operating floor during the work.
- From March 18, 2019, the removal of small rubble in the east-side area around the SFP started using pliers and suction equipment. From April 2, 2019, rubble removal in the same area started using a remote-controlled heavy machine.

Main work to help spent fuel removal at Unit 2

- On November 6, 2016, before the investigation toward formulating a work plan to dismantle the Reactor Building rooftop, etc., work to move and contain the remaining objects on the operating floor (1st round) was completed.
- On February 1, 2019, an investigation to measure the radiation dose on the floor, walls and ceiling inside the operating floor and confirm the contamination status was completed. After analyzing the investigative results, the “contamination density distribution” throughout the entire operating floor was obtained, based on which the airborne radiation dose rate inside the operating floor could be evaluated. A shielding design and measures to prevent radioactive material scattering, etc. will be examined.
- From April 8, 2019, work to move and contain the remaining objects on the operating floor (2nd round), such as materials and equipment which may hinder fuel removal work, started. The 2nd round included replacing the remaining objects in the container and cleaning the floor to suppress dust scattering, which were not scheduled in the 1st round. The status of dust density, etc. is monitored to steadily implement the work with safety first.
- An investigation inside the operating floor conducted during the period November 2018 – February 2019 confirmed that the air radiation dose was declining compared to the investigative result for the period 2011-2012.
- Based on this investigative result, it was considered that limited work could be implemented inside the operating floor.
- To reduce the risk of dust scattering while dismantling the building and ensure work could be implemented more securely and safely, methods, including minimizing the scope of dismantling the upper part of the operating floor and accesses from the south side, are being examined.

Main process to help fuel removal at Unit 3

- Regarding the fuel-handling machine (FHM) and crane, consecutive defects have occurred since the test operation started on March 15, 2018.
- On August 8, 2018, an alarm was issued during the pre-operation inspection of the FHM, whereupon operation was suspended. This was attributable to disconnection due to corrosion by rainwater ingress into the cable connection. Abnormalities were also detected in several control cables.
- On August 15, 2018, an alarm on the crane went off during work to clear materials and equipment and the crane operation was suspended.
- On September 29, 2018, to determine the risks of defects in fuel-handling facilities, the FHM was temporarily recovered and a safety inspection (operation check and facility inspection) started. For 14 defects detected in the safety inspection, measures were completed on January 27, 2019.
- On February 8, 2019, a function check after cable replacement was completed.
- On February 14, 2019, review of recovery measures in the event of defect occurrence, etc. and training for fuel removal using dummy fuel and the transport container started. During the training, seven defects were detected, although it was confirmed that these did not constitute safety problems that could lead to fuel, rubble, etc. falling.
- From March 15, 2019, the rubble removal training inside the pool started.
- From April 15, 2019, removal of 514 spent fuel assemblies and 52 non-irradiated fuel assemblies (a total of 566 assemblies) stored in the spent fuel pool started. Seven non-irradiated fuel assemblies were then loaded in the transport container and transportation to the common pool was completed on April 23, 2019.
- After reviewing fuel removal on this occasion, improving the procedures as required and providing more training, fuel removal (at the next unit onward) will be implemented. The dust density in the surrounding environment is being monitored and work implemented with safety first.

Plan to dismantle the Unit 1/2 exhaust stack

- On May 11, 2019, as part of preparation to dismantle the Unit 1/2 exhaust stack, the availability to install the mockup dismantling equipment on the top of the exhaust stack was checked using a crane for dismantling. The check confirmed that the planned lifting length (the distance from the crane hook to the exhaust stack top) differed from the actual lifting length and underlined the need for additional work such as raising the boom after moving the crane closer.
- A method that can ensure safety work will be selected, taking the influence on the process and the decommissioning work into consideration and implemented with safety first.
3. Retrieval of fuel debris

- Analysis of samples collected inside the PCV of Fukushima Daiichi NPS
 - Regarding the inside of Unit 1-3 PCV, it had been difficult to collect samples due to issues such as the high radiation dose environment. However, as the decommissioning work has progressed, samples could be collected.
 - For these examples, analysis and examination are underway to obtain useful knowledge for decommissioning, such as understanding the chemical characteristics of fission products and examination concerning fuel debris distribution.
 - Analysis and examination, focused on minute particles containing uranium using an electron microscope, confirmed there were particles supposedly derived from corium and with characteristics identical to those of actual debris as well as those supposedly generated during evaporation and solidification processes.
 - Sampling of a small amount of fuel debris inside the pedestal is currently being examined. The results of this analysis and experience in handling samples obtained through the analysis will be utilized in future analysis of fuel debris samples and examination of handling methods.

- Work to create an access route for the internal investigation of the Unit 1 PCV
 - As part of work to create an access route to investigate the inside of the Primary Containment Vessel (PCV), drilling was completed at three points on the outer door of the X-2 penetration, which includes doors through which workers enter or exit the PCV.
 - An inspection of the condition inside the X-2 penetration detected a deposit in front of the inner door, which was supposed to be stripped paint from the inner surface. Examination to understand its characteristics is underway.
 - In readiness to commence drilling of the inner door from early June 2019, a portion of the deposit will be removed to install the drilling equipment.

4. Plans to store, process and dispose of solid waste and decommission of reactor facilities

Promoting efforts to reduce and store waste generated appropriately and R&D to facilitate adequate and safe storage, processing and disposal of radioactive waste

- Management status of the rubble and trimmed trees
 - As of the end of April 2019, the total storage volume of concrete and metal rubble was approx. 268,800 m³ (+2,000 m³ compared to at the end of March with an area-occupation rate of 67%). The total storage volume of trimmed trees was approx. 134,100 m³ (±0 m³, with an area-occupation rate of 76%). The total storage volume of used protective clothing was approx. 5,100 m³ (-900 m³, with an area-occupation rate of 81%). The increase in rubble was mainly attributable to tank-related construction. The decrease in used protective clothing was attributable to incineration operation.

- Management status of secondary waste from water treatment
 - As of May 2, 2019, the total storage volume of waste sludge was 597 m³ (area-occupation rate: 85%), while that of concentrated waste fluid was 9,352 m³ (area-occupation rate: 91%). The total number of stored spent vessels, High-Integrity Containers (HICs) for multi-nuclide removal equipment, etc., was 4,362 (area-occupation rate: 68%).

- Water leakage at the Radioactive Waste Incinerator
 - On May 27, 2019, at the Radioactive Waste Incinerator building 1st floor incinerator room System A, water leakage was detected (approx. 30 m × 8 m × 11 mm, approx. 240L).
 - Following suspension of the facility, and isolating the incinerator auxiliary equipment cooling water system related to the Radioactive Waste Incinerator System A, the leakage was confirmed as having ceased.
 - Leaked water was assumed to be filtered water to cool the incinerator. No external leakage was identified because the leakage remained within the room though there was ingress of incinerated ash during the leakage process.
 - The analytical result of the leaked water revealed cesium 134: 2.8 × 10³ Bq/L, cesium 137: 3.8 × 10³ Bq/L, gross β radioactivity: 4.2 × 10² Bq/L. Leaked water was collected.
 - After the facility has cooled down, the leakage part will be checked and an overhaul conducted.

5. Reactor cooling

The cold shutdown condition will be maintained by cooling the reactor by water injection and measures to complement the status monitoring will continue

- Results of the test (STEP 2) to check the cooling condition of the Unit 2 fuel debris
 - To optimize the emergency response procedures, etc., a test involving temporarily suspending water injection to the reactor (3.0 to 0.0 m³/h) was conducted on May 13, 2019 and terminated on May 24, 2019.
 - The test confirmed that the temperature increase rate at the RPV bottom was at the same level of 0.2°C/h or less as expected and that the temperatures at the RPV bottom and inside the PCV during the test also varied; almost within expectations. No abnormality was detected in other parameters such as the dust density.
 - The difference between the prediction data and test data and the behavior variation depending on the location where the thermometer was installed will be evaluated to utilize the results in optimizing emergency response procedures, etc.

- Deviation from the limiting condition for operation (LCO) in monitoring the Unit 2 RPV nitrogen injection rate
 - Regarding monitoring of the Unit 2 RPV nitrogen injection rate, when the indication value of the monitor reached the lowest scale of 10 Nm³/h, the monitor specification was checked. The check confirmed that the lower measurement limit was incorrect (incorrect: 5 Nm³/h, correct: 10 Nm³/h).
 - Following this confirmation, the past record of nitrogen injection rate of Unit 2 was checked. The check confirmed that the rate was below the lower measurement limit of 10 Nm³/h for the periods March 16, 2019 and April 23 – May 19, 2019. Based on this result, it was regarded that the "necessary nitrogen injection rate" to suppress the hydrogen density remained unconfirmed and the case was considered a deviation from the limiting condition for operation (LCO), as specified in the Implementation Plan Chapter III Volume 1 Article 30 (Confirmation of the operation limit).
 - The reactor condition was also considered stable based on the following factors: no abnormality detected in the nitrogen gas injection facility, the facility remained in operation and the hydrogen gas density monitored by the PCV gas control facility was sufficiently lower than the control value of the hydrogen density (1.0% or less) specified in the implementation plan...
 - After implementing investigations to identify the cause for the erroneous lower measurement limit of the monitor and the reason for having read the monitor indication values in the minimum scale (10 Nm³/h) or less, measures will be examined.

6. Reduction in radiation dose and mitigation of contamination

Effective dose-reduction at site boundaries and purification of port water to mitigate the impact of radiation on the external environment

- Status of groundwater and seawater on the east side of Turbine Building Units 1-4
 - At No. 1-6, the H-3 density has been repeatedly declining and increasing since March 2018 and currently stands at around 1,700 Bq/L.
 - At No. 1-8, the H-3 density had been increasing from around 2,000 Bq/L since December 2018 and currently stands at around 3,400 Bq/L.
 - At No. 1-9, the density of gross β radioactive materials has been repeatedly declining and increasing around 20 Bq/L since April 2019 and currently stands at around 60 Bq/L.
 - At No. 1-12, the density of gross β radioactive materials had been decreasing from around 800 Bq/L since September 2018 to around 200 Bq/L. It has since been increasing and currently stands at around 2,400 Bq/L. Since August 15, 2013, pumping of groundwater continued (at the well point between the Unit 1 and 2 intakes: August 15, 2013 – October 12, 2015 and from October 24; at the repaired well: October 14 – 23, 2015).
 - In the Unit 1-4 intake open channel area, densities of radioactive materials in seawater have remained below the legal discharge limit except for the increase in Cs-137 and Sr-90 during rain. They have also been declining...
following the completed installation and the connection of steel pipe sheet piles for the sea-side impermeable walls. The density of Cs-137 has been decreasing since March 20, 2019, when the silt fence was transferred to the center of the open channel.

- In the area within the port, densities of radioactive materials in seawater have remained below the legal discharge limit, except for the increase in Cs-137 and Sr-90 during rain. They have been below the level of those in the Unit 1-4 intake open channel area and have been declining following the completed installation and connection of steel pipe sheet piles for the sea-side impermeable walls.

- In the area outside the port, regarding the densities of radioactive materials in seawater, those of Cs-137 and Sr-90 declined and remained low following the completed installation and connection of steel pipe sheet piles for the sea-side impermeable walls.

7. Outlook of the number of staff required and efforts to improve the labor environment and conditions

Securing appropriate staff long-term while thoroughly implementing workers’ exposure dose control. Improving the work environment and labor conditions continuously based on an understanding of workers’ on-site needs

- Staff management
 - The monthly average total of personnel registered for at least one day per month to work on site during the past quarter from January to March 2019 was approx. 9,500 (TEPCO and partner company workers), which exceeded the monthly average number of actual workers (approx. 7,200). Accordingly, sufficient personnel are registered to work on site.
 - It was confirmed with the prime contractors that the estimated manpower necessary for the work in June 2019 (approx. 3,840 per day: TEPCO and partner company workers) would be secured at present. The average numbers of workers per day per month (actual values) were maintained, with approx. 3,400 to 5,600 since FY2017 (see Figure 7).
 - The number of workers decreased from both within and outside Fukushima Prefecture. The local employment ratio (TEPCO and partner company workers) as of April 2019 has remained constant at around 60%.
 - The monthly average exposure dose of workers remained at approx. approx. 0.39 mSv/month during FY2016, approx. 0.36 mSv/month during FY2017 and approx. approx. 0.32 mSv/month during FY2018.

(Reference: Annual average exposure dose 20 mSv/year ≈ 1.7 mSv/month)

- For most workers, the exposure dose was sufficiently within the limit and allowed them to continue engaging in radiation work.
Status of influenza and norovirus cases (conclusion of infection and expansion-preventive measures)

- In response to the decline in influenza cases, measures to prevent infection and expansion were concluded at the end of April 2019. During this season (2018-2019), there were a total of 311 influenza infections and 15 norovirus infections, while the totals for the entire previous season (2017-2018) showed 317 influenza infections and 11 norovirus infections respectively.

Note: The above data is based on reports from TEPCO and partner companies, which include diagnoses at medical clinics outside the site. The subjects of this report were workers of partner companies and TEPCO in Fukushima Daiichi and Daini Nuclear Power Stations.

- The number declined by six for influenza cases and increased by four for norovirus cases compared to the previous season.
- The number of influenza cases remained almost constant and norovirus cases, low, and no outbreak was confirmed, nor any case of food poisoning. These results demonstrate the effectiveness of measures to prevent infection and expansion.
- Though station-wide measures were concluded, measures to prevent infection and expansion will be taken when further workplace infections are identified.

Status of heat stroke cases

- In FY2019, measures to further prevent heat stroke commenced from April to cope with the hottest season.
- In FY2019, no worker suffered heat stroke due to work up until May 27 (in FY2018, one worker up until the end of May). Continued measures will be taken to prevent heat stroke.

Progress status of the work to transfer the mega float toward reducing the risk of tsunami

- Toward reducing the risk of tsunamis, work to transfer the mega float is underway. A defense embankment was installed to protect the sea-side impermeable walls before transferring the mega float. Following the installation, the mega float was transferred into the Unit 1-4 intake open channel by May 16, 2019. Treatment of ballast water and decontamination inside the mega float and work to create a bottom-seated mound also commenced.
- The environmental monitoring within the port, which continued throughout and after the work to transfer the mega float, detected no significant variation to date.
- Work will continue with safety first to complete the measures to reduce tsunami risk in the 1st half of FY2020.

8. Others

- Figure 7: Changes in the average number of workers per weekday for each month since FY2017 (actual values)

- Figure 8: Changes in monthly individual worker exposure dose (monthly average exposure dose since March 2011)
Status of seawater monitoring within the port (comparison between the highest values in 2013 and the latest values)

“The highest value” ➔ “the latest value (sampled during May 24-28)”; unit (Bq/L); ND represents a value below the detection limit

<table>
<thead>
<tr>
<th>Nuclide</th>
<th>2013 Value</th>
<th>Latest Value</th>
<th>Unit</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cesium-134</td>
<td>3.3 (10/17)</td>
<td>ND(0.26)</td>
<td>1/10</td>
<td>Sea side</td>
</tr>
<tr>
<td>Cesium-137</td>
<td>9.0 (10/17)</td>
<td>ND(0.32)</td>
<td>1/20</td>
<td>Sea side</td>
</tr>
<tr>
<td>Gross β</td>
<td>74 (8/19)</td>
<td>ND(16)</td>
<td>1/4</td>
<td>South side</td>
</tr>
<tr>
<td>Tritium</td>
<td>67 (8/19)</td>
<td>ND(1.8)</td>
<td>1/30</td>
<td>South side</td>
</tr>
<tr>
<td>Cesium-134</td>
<td>4.4 (12/24)</td>
<td>ND(0.22)</td>
<td>1/20</td>
<td>South side</td>
</tr>
<tr>
<td>Cesium-137</td>
<td>10 (12/24)</td>
<td>0.48</td>
<td>1/20</td>
<td>South side</td>
</tr>
<tr>
<td>Gross β</td>
<td>69 (7/4)</td>
<td>ND(16)</td>
<td>1/3</td>
<td>East side</td>
</tr>
<tr>
<td>Tritium</td>
<td>59 (8/19)</td>
<td>ND(1.8)</td>
<td>1/30</td>
<td>East side</td>
</tr>
<tr>
<td>Cesium-134</td>
<td>5.0 (12/2)</td>
<td>ND(0.25)</td>
<td>1/20</td>
<td>East side</td>
</tr>
<tr>
<td>Cesium-137</td>
<td>8.4 (12/2)</td>
<td>0.43</td>
<td>1/10</td>
<td>East side</td>
</tr>
<tr>
<td>Gross β</td>
<td>69 (8/19)</td>
<td>ND(16)</td>
<td>1/4</td>
<td>West side</td>
</tr>
<tr>
<td>Tritium</td>
<td>52 (8/19)</td>
<td>ND(1.8)</td>
<td>1/20</td>
<td>West side</td>
</tr>
<tr>
<td>Cesium-134</td>
<td>2.8 (12/2)</td>
<td>ND(0.38)</td>
<td>1/7</td>
<td>West side</td>
</tr>
<tr>
<td>Cesium-137</td>
<td>5.8 (12/2)</td>
<td>ND(0.49)</td>
<td>1/10</td>
<td>West side</td>
</tr>
<tr>
<td>Gross β</td>
<td>46 (8/19)</td>
<td>ND(16)</td>
<td>1/2</td>
<td>North side</td>
</tr>
<tr>
<td>Tritium</td>
<td>24 (8/19)</td>
<td>ND(2.2)</td>
<td>1/10</td>
<td>North side</td>
</tr>
</tbody>
</table>

Summary of TEPCO data as of May 29, 2019

- **Cesium-134**: 5.3 (2013/8) ➔ ND(0.56) Below 1/9
- **Cesium-137**: 8.6 (2013/8) ➔ 0.97 Below 1/8
- **Gross β**: 40 (2013/7) ➔ ND(16) Below 1/2
- **Tritium**: 340 (2013/6/26) ➔ ND(1.4) Below 1/200

*1: Monitoring commenced in or after March 2014. Monitoring inside the sea-side impermeable walls was finished because of the landfill.

*2: For the point, monitoring was finished from December 12, 2018 due to preparatory work for transfer of mega float.

*3: For the point, monitoring point was moved from February 6, 2019 due to preparatory work for transfer of mega float.

*4: For the point, monitoring was finished from April 3, 2019 due to preparatory work for transfer of mega float.

Note: The gross β measurement values include natural potassium 40 (approx. 12 Bq/L). They also include the contribution of yttrium 90, which radioactively balance strontium 90.
Status of seawater monitoring around outside of the port (comparison between the highest values in 2013 and the latest values)

(The latest values sampled during May 24-28)

<table>
<thead>
<tr>
<th>Location</th>
<th>Tritium</th>
<th>Cesium-134</th>
<th>Cesium-137</th>
<th>Gross β</th>
</tr>
</thead>
<tbody>
<tr>
<td>Northeast side of port entrance (offshore 1km)</td>
<td>ND (2013) → ND (0.69)</td>
<td>ND (2013) → ND (0.76)</td>
<td>ND (2013) → ND (17)</td>
<td>ND (2013) → ND (0.85)</td>
</tr>
<tr>
<td>East side of port entrance (offshore 1km)</td>
<td>ND (2013) → ND (0.72)</td>
<td>1.6 (2013/10/18) → ND (0.59) Below 1/2</td>
<td>ND (2013) → ND (17)</td>
<td>6.4 (2013/10/18) → ND (0.85) Below 1/7</td>
</tr>
<tr>
<td>North side of north breakwater (offshore 0.5km)</td>
<td>ND (2013) → ND (0.86)</td>
<td>ND (2013) → ND (0.63)</td>
<td>ND (2013) → ND (17)</td>
<td>4.7 (2013/8/18) → ND (0.85) Below 1/5</td>
</tr>
<tr>
<td>South side of south breakwater (offshore 0.5km)</td>
<td>ND (2013) → ND (0.44)</td>
<td>ND (2013) → ND (0.58)</td>
<td>ND (2013) → ND (17)</td>
<td>ND (2013) → ND (0.85)</td>
</tr>
<tr>
<td>North side of Unit 5 and 6 release outlet</td>
<td>1.8 (2013/6/21) → ND (0.71) Below 1/2</td>
<td>4.5 (2013/3/17) → ND (0.50) Below 1/9</td>
<td>12 (2013/12/23) → 12</td>
<td>8.6 (2013/6/26) → ND (0.90) Below 1/9</td>
</tr>
<tr>
<td>Southeast side of port entrance (offshore 1km)</td>
<td>ND (2013) → ND (0.85)</td>
<td>3.3 (2013/12/24) → ND (0.41) Below 1/8</td>
<td>7.3 (2013/10/11) → 0.68 Below 1/10</td>
<td>69 (2013/8/19) → ND (16) Below 1/4</td>
</tr>
<tr>
<td>South side of Unit 3</td>
<td>ND (2013) → ND (0.91)</td>
<td>3.0 (2013/7/15) → ND (0.72) Below 1/4</td>
<td>15 (2013/12/23) → 11</td>
<td>1.9 (2013/11/25) → ND (0.90) Below 1/2</td>
</tr>
</tbody>
</table>

Note: The gross β measurement values include natural potassium 40 (approx. 12 Bq/L). They also include the contribution of yttrium 90, which radioactively balance strontium 90.

Sea side impermeable wall
Silt fence

Summary of TEPCO data as of May 29, 2019
Unit 1

Regarding fuel removal from Unit 1 spent fuel pool, there is a plan to install a dedicated cover for fuel removal over the top floor of the Reactor Building (operating floor). On November 10, 2016, removal of all roof panels and wall panels of the building cover was completed. On May 11, 2017, removal of pillars and beams of the building cover was completed. On December 19, 2017, modification of the pillars and beams of the building cover and installation windbreak fences were completed. From March 18, 2019, removal of small rubble in the east-side area around the SFP started as an initial step using pliers and suction equipment. From April 2, 2019, rubble removal in the same area started using remote-controlled heavy machine.

![Image of fuel removal methods](Image)

Unit 2

Toward fuel removal and debris retrieval in the Unit 2 spent fuel pool, the scope of dismantling and modification of the existing Reactor Building rooftop is examined. Based on the investigative results inside the operating floor, etc., methods are being examined from the perspective of ensuring safety during work, controlling influence on the outside of the power station, and removing fuel rapidly to reduce risks.

In addition to Plan (1) in which the whole upper part of the operating floor is dismantled and the container of poor fuel is shared with debris retrieval and Plan (2) in which a cover for pool fuel retrieval is separately installed, a method which minimizes the range of dismantling the upper part of the operating floor and accesses from the south side is being examined.

Unit 3

Prior to the installation of a cover for fuel removal, removal of large rubble from the spent fuel pool was completed in November 2015. To ensure safe and steady fuel removal, training of remote control was conducted at the factory using the actual fuel-handling machine which will be installed on site (February – December 2015). Measures to reduce dose on the Reactor Building top floor (decontamination, shielding) were completed in December 2016. Installation of a cover for fuel removal and a fuel-handling machine is underway from January 2017. Installation of the fuel removal cover was completed on February 23, 2018. Toward fuel removal, the rubble retrieval training inside the pool, which was scheduled in conjunction with fuel removal training, started from March 15, 2019, and started fuel removal from April 15, 2019.

Unit 4

In the Mid- and Long-Term Roadmap, the target of Phase 1 involved commencing fuel removal from inside the spent fuel pool (SFP) of the 1st Unit within two years of completion of Step 2 (by December 2013). On November 18, 2013, fuel removal from Unit 4, or the 1st Unit, commenced and Phase 2 of the roadmap started.

On November 5, 2014, within a year of commencing work to fuel removal, all 1,331 spent fuel assemblies in the pool had been transferred. The transfer of the remaining non-irradiated fuel assemblies to the Unit 6 SFP was completed on December 22, 2014. (2) of the non-irradiated fuel assemblies were removed in advance in July 2012 for fuel checks)

This marks the completion of fuel removal from the Unit 4 Reactor Building. Based on this experience, fuel assemblies will be removed from Unit 1-3 pools.

Common pool

- **Storage area**: An open space will be maintained in the common pool (Transfer to the temporary cask custody area)

Progress to date

- The common pool has been restored to a condition allowing it to re-accommodate fuel to be handled (November 2012)
- Loading of spent fuel stored in the common pool to dry casks commenced (June 2013)
- Fuel removal from the Unit 4 spent fuel pool began to be received (November 2013 - November 2014)

Temporary cask (2) custody area

- Spent fuel is accepted from the common pool

©Tokyo Electric Power Company Holdings, Inc. All Rights Reserved.
Investigation into TIP Room of the Unit 1 Reactor Building

- To improve the environment for future investigations inside the PCV, etc., an investigation was conducted from September 24 to October 2, 2015 at the TIP Room. (Due to high dose around the entrance in to the TIP Room, the investigation of dose rate and contamination distribution was conducted through a hole drilled from the walkway of the Turbine Building, where the dose was low)
- The investigative results identified high dose at X-31 to 33 penetrations (instrumentation penetration) and low dose at other parts.
- As it was confirmed that work inside the TIP room would be available, the next step will include identification of obstacles which will interfere the work inside the TIP Room and formulation of a plan for dose reduction.

Status of investigation inside the PCV

Prior to fuel debris retrieval, an investigation inside the PCV will be conducted to inspect the status there including the location of fuel debris.

Investigative outline:
- In April 2015, a device, which entered the inside of the PCV through a narrow access opening (bore: φ 100 mm), collected information such as images and airborne dose inside the PCV 1st floor.
- In March 2017, the investigation using a self-propelled investigation device, conducted to inspect the spreading of debris to the basement floor outside the pedestal, took images of the PCV bottom status for the first time. The status inside the PCV will continue to be examined based on the collected image and dose data.

Investigation in the leak point detected in the upper part of the Unit 1 Suppression Chamber (S/C)

Investigation in the leak point detected in the upper part of Unit 1 S/C from May 27, 2014 from one expansion joint cover among the lines installed there. As no leakage was identified from other parts, specific methods will be examined to halt the flow of water and repair the PCV.

Unit 1

Air dose rate inside the Reactor Building:
Max. 5,150Sv/h (1F southeast area) (measured on July 4, 2012)

Nitrogen injection flow rate into the RPV: 29,880Nm³/h

PCV hydrogen concentration System A: 0.00 vol%, System B: 0.00 vol%

Temperature inside the PCV: approx. 19°C

Temperature of the RPV bottom: approx. 19°C

Water level inside the PCV: approx. 1.5m

PCV bottom temperature: 27.3°C

Water level at the triangular corner: TP2,474 (measured on February 20, 2013)

Air dose rate inside the torus chamber: approx. TP2,264 (measured on February 20, 2013)

Temperature at the triangular corner: 32.4-32.6°C (measured on September 20, 2012)

Water level at the triangular corner: TP2,474-2,984 (measured on September 20, 2012)

Temperature inside the PCV: approx. 21°C

Water level inside the PCV: approx. 1.9m

Water level of the Turbine Building: TP. (measured on September 20, 2012)

* Indices related to the plant are values as of 11:00, May 29, 2019

Investigations inside PCV

1st (Oct 2012)
- Acquiring images
- Measuring air temperature and dose rate
- Measuring water level and temperature
- Sampling contaminated water
- Installing permanent monitoring instrumentation

2nd (Apr 2015)
- Confirming the status of PCV 1st floor
- Acquiring images
- Measuring air temperature and dose rate
- Replacing permanent monitoring instrumentation

3rd (Mar 2017)
- Acquiring images
- Measuring air temperature and dose rate
- Replacing permanent monitoring instrumentation

Leakage points from PCV
- PCV vent pipe vacuum break line bellows (identified in May 2014)
- Sand cushion drain line (identified in November 2013)

©Tokyo Electric Power Company Holdings, Inc. All Rights Reserved.

Image near the bottom

Part to store a camera and a dosimeter
Self-propelled investigation device

Dosimeter and underwater camera

Image of the S/C upper part investigation

<Image of investigation inside the PCV>

<Glossary>
1) TIP (Traversing In-core Probe)
2) Penetration: Through-hole of the PCV
3) S/C (Suppression Chamber), Suppression pool, used as the water source for the emergent core cooling system.
4) SFP (Spent Fuel Pool)
5) RPV (Reactor Pressure Vessel)
6) PCV (Primary Containment Vessel)
Installation of an RPV thermometer and permanent PCV supervisory instrumentation

1. Replacement of the RPV thermometer
 - As the thermometer installed at the Unit 2 RPV bottom after the earthquake had broken in February 2014, it was excluded from the monitoring thermometers.
 - In April 2014, removal of the broken thermometer failed and was suspended. Rust-stripping chemicals were injected and the broken thermometer was removed in January 2015. A new thermometer was reinstalled in March. The thermometer has been used as a part of permanent supervisory instrumentation since April.

2. Reinstallation of the PCV thermometer and water-level gauge
 - Some of the permanent supervisory instrumentation for PCV could not be installed in the planned locations due to interference with existing grating (August 2013). The instrumentation was removed in May 2014 and new instruments were reinstalled in June 2014. The trend of added instrumentation will be monitored for approx. one month to evaluate its validity.
 - The measurement during the installation confirmed that the water level inside the PCV was approx. 300mm from the bottom.

Investigative results on torus chamber walls

- The torus chamber walls were investigated (on the north side of the east-side walls) using equipment specially developed for that purpose (a swimming robot and a floor traveling robot).
- At the east-side wall pipe penetrations (five points), the "status and "existence of flow" were checked.
- A demonstration using the above two types of underwater wall equipment indicated that the equipment could check the status of penetration.
- Regarding Penetrations 1-5, the results of checking the sprayed tracer (11) by camera showed no flow around the penetrations. (investigation by the swimming robot)
- Regarding Penetration 3, a sonar check showed no flow around the penetrations. (investigation by the floor traveling robot)

Status of investigation inside the PCV
Prior to fuel debris retrieval, an investigation inside the PCV will be conducted to inspect the status there including the location of fuel debris. [Investigative outline]
- Investigative devices such as a robot will be injected from Unit 2 X-6 penetration (14) and access the inside of the pedestal using the CRD rail.

Progress status
- On January 26 and 30, 2017, a camera was inserted from the PCV penetration to inspect the status of the CRD replacement rail on which the robot will travel. On February 9, a camera on the access route of the self-propelled investigative device was removed and on February 16, the inside of the PCV was investigated using the device.
- The results of this series of investigations confirmed fallen and deformed gratings and a quantity of deposit inside the pedestal.
- On January 19, 2018, the status below the platform inside the pedestal was investigated using an investigatory device with a hanging mechanism. From the analytical results of images obtained in the investigation, deposits probably including fuel debris were found at the bottom of the pedestal. In addition, multiple parts higher than the surrounding deposits were also detected. We presumed that there were multiple routes of fuel debris failing. Obtained data were processed in panoramic image visualization to acquire cleaner images.
- On February 13, 2019, an investigation touching the deposits at the bottom of the pedestal and on the platform was conducted and confirmed that the pebble-shaped deposits, etc. could be moved and that hard rock-like deposits that could not be gripped may exist.
- In addition, images, etc. would help determine the contour and size of the deposits could be collected by moving the investigatory unit closer to the deposits than the previous investigation.

Capturing the location of fuel debris inside the reactor by measurement using muons

- A camera was inserted from the PCV penetration to inspect the status of the CRD replacement rail on which the robot will travel.
- On February 9, a camera on the access route of the self-propelled investigative device was removed and on February 16, the inside of the PCV was investigated using the device.
- The results of this series of investigations confirmed fallen and deformed gratings and a quantity of deposit inside the pedestal.
- On January 19, 2018, the status below the platform inside the pedestal was investigated using an investigatory device with a hanging mechanism. From the analytical results of images obtained in the investigation, deposits probably including fuel debris were found at the bottom of the pedestal. In addition, multiple parts higher than the surrounding deposits were also detected. We presumed that there were multiple routes of fuel debris failing. Obtained data were processed in panoramic image visualization to acquire cleaner images.
- On February 13, 2019, an investigation touching the deposits at the bottom of the pedestal and on the platform was conducted and confirmed that the pebble-shaped deposits, etc. could be moved and that hard rock-like deposits that could not be gripped may exist.
- In addition, images, etc. would help determine the contour and size of the deposits could be collected by moving the investigatory unit closer to the deposits than the previous investigation.
Progress toward decommissioning: Works to identify the plant status and toward fuel debris retrieval

May 30, 2019
Secretariat of the Team for Countermeasures for Decommissioning and Contaminated Water Treatment

4/6

Water flow was detected from the Main Steam Isolation Valve* room

On January 18, 2014, a flow of water from around the door of the Steam Isolation Valve room in the Reactor Building Unit 3 1st floor northeast area to the nearby floor drain tunnel (drain outlet) was detected. As the drain outlet connects with the underground part of the Reactor Building, there is no possibility of outflow from the building. From April 23, 2014, image data has been acquired by camera and the radiation dose measured via pipes for measurement instrumentation, which connect the air-conditioning room on the Reactor Building 2nd floor with the Main Steam Isolation Valve Room on the 1st floor. On May 15, 2014, water flow from the expansion joint of one Main Steam Line was detected. This is the first leak from PCV detected in the Unit 3. Based on the images collected in this investigation, the leak volume will be estimated and the need for additional investigations will be examined. The investigative results will also be utilized to examine water stoppage and PCV repair methods.

Investigative results into the Unit 3 PCV equipment hatch using a small investigation device

- As part of the investigation into the PCV to facilitate fuel debris retrieval, the status around the Unit 3 PCV equipment hatch was investigated using a small self-traveling investigation device on November 26, 2015.
- Given blots such as rust identified below the water level inside the PCV, there may be a leakage from the seal to the extent of bleeding.
- Methods to investigate and repair the parts, including other PCV penetrations with a similar structure, will be considered.

Investigation inside the PCV

Prior to fuel debris retrieval, the inside of the Primary Containment Vessel (PCV) was investigated to identify the status there including the location of the fuel debris.

[Investigative outline]

- The status of X-53 penetration(4), which may be under the water and which is scheduled for use to investigate the inside of the PCV, was investigated using remote-controlled ultrasonic test equipment. The results showed that the penetration was not under the water (October 22-24, 2014).
- For the purpose of confirming the status inside the PCV, an investigation device was inserted into the PCV from X-53 penetration on October 20 and 22, 2015 to obtain images, data of dose and temperature and sample contaminated water. No damage was identified on the structure and walls inside the PCV and the water level was almost identical with the estimated value. In addition, the dose inside the PCV was confirmed to be lower than in other Units.
- In July 2017, the inside of the PCV was investigated using the underwater ROV (remotely operated underwater vehicle) to inspect the inside of the pedestal.
- Analysis of image data obtained in the investigation identified damage to multiple structures and the supposed core internals. Consideration about fuel removal based on the obtained information will continue.
- Videos obtained in the investigation were reproduced in 3D. Based on the reproduced images, the relative positions of the structures, such as the rotating platform sliding off the rail with a portion buried in deposits, were visually understood.

Capturing the location of fuel debris inside the reactor by measurement using muons

<table>
<thead>
<tr>
<th>Period</th>
<th>Evaluation results</th>
</tr>
</thead>
<tbody>
<tr>
<td>May – Sep 2017</td>
<td>The evaluation confirmed that no large lump existed in the core area where fuel had been placed and that part of the fuel debris potentially existed at the bottom of the RPV.</td>
</tr>
</tbody>
</table>

* Indices related to plant are values as of 11:00, May 29, 2019

©Tokyo Electric Power Company Holdings, Inc. All Rights Reserved.

"Glossary"

(1) SFP (Spent Fuel Pool)
(2) RPV (Reactor Pressure Vessel)
(3) PCV (Primary Containment Vessel)
(4) Penetration: Through-hole of the PCV
Work to improve the reliability of the circulation water injection cooling system and pipes to transfer contaminated water.

- Operation of the reactor water injection system using Unit 3 Condensate Storage Tank (CST) as a water source commenced (from July 5, 2013). Compared to the previous systems, the reliability of the reactor water injection system was enhanced, e.g. by increasing the amount of water-source storage and enhancing durability.
- To reduce the risk of contaminated-water leakage, the circulation loop was shortened by installing a reverse osmosis (RO) device in the Unit 4 Turbine Building within the circulation loop, comprising the transfer of contaminated water, water treatment and injection into the reactors. Operation of the installed RO device started from October 7 and 24-hour operation started from October 20. Installation of the new RO device inside the building shortened the circulation loop from approx. 3.0 to 0.8 km.
- To accelerate efforts to reduce the radiation density in contaminated water inside the buildings, circulating purification of contaminated water inside the buildings started on the Unit 3 and 4 side on February 22 and on the Unit 1 and 2 side on April 11.
- For circulating purification, a new pipe (contaminated water purification line) divided from the water treatment equipment outlet line was installed to transfer water purified at the water treatment equipment to the Unit 1 Reactor Building and the Unit 2-4 Turbine Buildings.
- The risks of contaminated water inside the buildings will continue to be reduced in addition to reduction of its storage.

* The entire length of contaminated water transfer in almost all areas, while on its in the Unit 4 Turbine Building within the circulation loop, completing purification of contaminated water transferred was approx. 2 km, including the transfer line of surplus water to the upper heights (approx. 1.3km).

Progress status of dismantling of flange tanks

- To facilitate replacement of flanged tanks, dismantling of flanged tanks started in H1 east/H2 areas in May 2015. Dismantling of all flanged tanks was completed in H1 east area (12 tanks) in October 2015, in H2 area (28 tanks) in March 2016, in H4 area (56 tanks) in May 2017, in H3 B area (31 tanks) in September 2017, in H5 and H5 north areas (31 tanks) in June 2018, in G5 area (38 tanks) in July 2018, H6 and H6 north areas (24 tanks) in September 2018 and G4 south area (17 tanks) in March 2019.

Completion of purification of contaminated water (RO concentrated salt water)

Contaminated water (RO concentrated salt water) is being treated using seven types of equipment including the multi-nuclide removal equipment (ALPS). Treatment of the RO concentrated salt water was completed on May 27, 2015, with the exception of the remaining water at the tank bottom. The remaining water will be treated sequentially toward dismantling the tanks. The strontium-treated water from other facilities than the multi-nuclide removal equipment will be re-purified in the multi-nuclide removal equipment to further reduce risks.

Preventing groundwater from flowing into the Reactor Buildings

Reducing groundwater inflow by pumping sub-drain water

To reduce groundwater flowing into the buildings, pumping-up of groundwater from wells (subdrains) around the buildings started on September 3, 2015. Pumped-up groundwater was purified at dedicated facilities and released after TEPCO and a third-party organization confirmed that its quality meets operational targets. Via a groundwater bypass, reduce the groundwater level around the Building and groundwater inflow into the Building

Measures to pump up groundwater flowing from the mountain side upstream of the Building to reduce the groundwater inflow (groundwater bypass) have been implemented. The pumped up groundwater is temporally stored in tanks and released after TEPCO and a third-party organization have confirmed that its quality meets operational targets. Through periodical monitoring, pumping of wells and tanks is operated appropriately. At the observation holes installed at a height equivalent to the buildings, the trend showing a decline in groundwater levels is checked.

The analytical results on groundwater inflow into the buildings based on existing data showed a declining trend.

Installing land-side impermeable walls with frozen soil around Units 1-4 to prevent the inflow of groundwater into the building

To prevent the inflow of groundwater into the buildings, installation of impermeable walls on the land side is planned. Freezing started on the sea side and at a part of the mountain side from March 2016 and at 95% of the mountain side from June 2016. Freezing of the remaining unfrozen sections advanced with a phased approach and freezing of all sections started in August 2017.

In March 2018, construction of the land-side impermeable walls was completed, except for a portion of the depth, based on a monitoring result showing that the underground temperature had declined below 0°C in almost all areas, while on the mountain side, the difference between the inside and outside increased to approx. 4-5 m. The 21st Committee on Countermeasures for Contaminated Water Treatment, held on March 7, 2018, evaluated that together with the function of sub-drains, etc., a water-level management system to stably control groundwater and isolate the buildings from it had been established and had allowed a significant reduction in the amount of contaminated water generated.

For the unfrozen depth, a supplementary method was implemented and it was confirmed that temperature of the part declined below 0°C from September 2018. From February 2019, maintenance operation started at all sections.
Progress toward decommissioning: Work to improve the environment within the site

Immediate targets
- Reduce the effect of additional release from the entire power station and radiation from radioactive waste (secondary water treatment waste, rubble, etc.) generated after the accident, to limit the effective radiation dose to below 1 mSv/year at the site boundaries.
- Prevent contamination expansion in sea, decontamination within the site

Optimization of radioactive protective equipment

Based on the progress of measures to reduce environmental dosage on site, the site is categorized into two zones: highly contaminated area around Unit 1-4 buildings, etc. and other areas to optimize protective equipment according to each category aiming at improving safety and productivity by reducing load during work.

From March 2016, limited operation started. From March and September 2017, the G Zone was expanded.

Installation of dose-rate monitors

To help workers in the Fukushima Daiichi Nuclear Power Station precisely understand the conditions of their workplaces, a total of 86 dose-rate monitors were installed by January 4, 2016.

These monitors allow workers to confirm real time on-site dose rates at their workplaces.

Workers are also able to check concentrated data through large-scale displays installed in the Main Anti-Earthquake Building and the access control facility.

Installation of sea-side impermeable walls

To prevent the outflow of contaminated water into the sea, sea-side impermeable walls have been installed.

Following the completed installation of steel pipe sheet piles on September 22, 2015, connection of these piles was conducted and connection of sea-side impermeable walls was completed on October 26, 2015. Through these works, closure of sea-side impermeable walls was finished and the contaminated water countermeasures have been greatly advanced.

Status of the large rest house

A large rest house for workers was established and its operation commenced on May 31, 2015.

Spaces in the large rest house are also installed for office work and collective worker safety checks as well as taking rest.

On March 1, 2016 a convenience store opened in the large rest house. On April 11, operation of the shower room started. Efforts will continue to improve convenience of workers.