Main decommissioning work and steps

All fuel had been removed from Unit 4 SFP by December 22, 2014. Work continues toward fuel removal and debris (Note 1) retrieval from Units 1-3.

(\textit{Note 1}) Fuel assemblies having melted through in the accident.

Toward fuel removal from the spent fuel pool

Toward fuel removal from the Unit 3 SFP, the rubble retrieval training inside the pool, which was scheduled in conjunction with fuel removal training, started from March 15, and the process is being reviewed to start fuel removal within April.

As measures to reduce the dose on the Reactor Building operating floor, decontamination and installation of shields were conducted in June and December 2016, respectively. Installation of a fuel removal cover started in January 2017, and installation of all dome roofs was completed in February 2018.

Three principles behind contaminated water countermeasures:

Countermeasures for contaminated water are implemented in accordance with the following three principles:

1. \textbf{Eliminate} contamination sources
 - Multi-nuclide removal equipment, etc.
 - Remove contaminated water from the trench (Note 3)
 (Note 3) Underground tunnel containing pipes.

2. \textbf{Isolate} water from contamination
 - Pump up groundwater for bypass
 - Pump up groundwater near buildings
 - Land-side impermeable walls
 - Waterproof pavement

3. \textbf{Prevent leakage} of contaminated water
 - Enhance soil by adding sodium silicate
 - Sea-side impermeable walls
 - Increase the number of (welded-joint) tanks

Multi-nuclide removal equipment (ALPS), etc.

- This equipment removes radionuclides from the contaminated water in tanks and reduces risks.
- Treatment of contaminated water (RO concentrated salt water) was completed in May 2015 with multi-nuclide removal equipment, additional multi-nuclide removal equipment installed by TEPCO (operation commenced in September 2014) and a Japanese government subsidy project (operation commenced in October 2014).
- Strontium-treated water from equipment other than ALPS is being re-treated in ALPS.

Land-side impermeable walls

- Land-side impermeable surround the buildings and reduce groundwater inflow.
 - Freezing started on the sea side and part of the mountain side from March 2016, and on 95% of the mountain side from June 2016.
 - Freezing of the remaining unfrozen sections advanced with a phased approach, and freezing of all sections started in August 2017.
 - In March 2018, the land-side impermeable walls were considered completed, except for a portion of the depth, based on monitoring results showing that the underground temperature had declined to below 0°C in almost all areas, while on the mountain side, the difference between the inside and outside increased to approx. 4-5 °C. Multi-layered contaminated water management measures, including subdrains and facing, have kept the groundwater level stable. Consequently, a water-level management system to isolate the buildings from groundwater was considered to have been established. The Committee on Countermeasures for Contaminated Water Treatment, held on March 7, resulted in clear recognition of the effect of the land-side impermeable walls in shielding the groundwater and it was concluded that the land-side impermeable walls had allowed a significant reduction in the amount of contaminated water generated.

Sea-side impermeable walls

- Impermeable walls are being installed on the sea side of Units 1-4 to prevent contaminated groundwater from flowing into the sea.
 - The installation of steel pipe sheet piles was completed in September 2015, and they were connected in October 2015. This work completed the closure of the sea-side impermeable walls.

Status inside the cover for fuel removal

(March 15, 2018)
Status of Progress and Future Challenges of the Mid-and-Long-Term Roadmap toward Decommissioning of TEPCO Holdings Fukushima Daiichi Nuclear Power Station (Outline)

Completion of floor opening cover installed to protect Unit 1 SFP

Toward the protection of the spent fuel pool (SFP) to secure an access route from the west work floor and prevent the falling of small rubble from the operating floor during the work, the floor opening was covered by March 6, 2019. Following the covering, removal of small rubble in the east-side area around the SFP started from March 18, 2019.

Start of removal of existing pipes, etc. from the Unit 2 Turbine Building sheed extension

As measures to improve the environment around the Unit 2, pipes, roof blocks, etc. of the Turbine Building sheed extension, the Reactor Building sheed extension and the Unit 1/2 waste treatment building, to which contamination sources are attached, will be removed.

The work began with Turbine Building sheed extension from March 25, 2019.

Anti-scattering agents are sprayed before the work and dust is monitored by the dust monitor during the work to steadily implement the work with safety first.

Completion of safe passage installed in response to fallen material from the Unit 3/4 exhaust stack

In response to the detection of scaffold material having fallen from the Unit 3/4 exhaust stack on January 9, 2019, installation of a roofed safe passage was completed on March 25, 2019 as one of the safety measures.

For the Unit 3 exhaust stack, an investigation by drone was conducted on March 8 and 15, 2019 to check the parts where scaffold material had fallen; and the extra-ordinary inspection detected potential authentication.

Based on the investigative results, the fallen material was considered attributable to corrosion of old scaffold material installed at the time of construction. Regarding the parts where potential degradation was detected, investigation confirmed no condition that may immediately lead to falling, but detected parts which had no scaffold material and suffered worsen corrosion, etc.

Other exhaust stacks will be investigated using a drone, and measures to reduce falling risks will be examined.

Investigation into the condition inside the Unit 1/2 exhaust stack

Toward dismantling of the Unit 1/2 exhaust stack, the demonstration test of the dismantling equipment STEP 3 (verification of work procedures) will be completed in early April, 2019.

To check the condition inside the stack, etc., an investigation before actual work will start from early April using a dedicated large crane for dismantling the exhaust stack. The investigation will include measuring the radiation dose inside the stack and checking obstacles there using a camera.

The dismantling equipment will be transferred to the site and assembled to start dismantling from mid-May.

Outlook for starting Unit 3 fuel removal

During the fuel retrieval training implemented from February, seven defects were detected. For six defects, which were attributable to quality control of work such as inappropriate work procedures or daily management, recurrence will be prevented by revising the procedures, etc. For the remaining defect, whose root cause was still being analyzed but location was identified, the section was recovered by replacing the part. Integrity will be verified for similar parts. At the same time, it was confirmed that these seven defects were not safety problems that may lead to the falling of fuel, rubble, etc. To ensure early response in the event of defect occurrence, spare parts are being prepared.

The rubble retrieval training inside the pool, which was scheduled in conjunction with the fuel removal training, started from March 15; and the process is being reviewed to start fuel removal within April.

Completion of ALPS-treated water transfer from flanged tanks

Transfer of ALPS-treated water stored in flanged tanks to more reliable welded-joint tanks was completed on March 27, 2019, which meant that the milestone specified in the Mid-and-Long-Term Roadmap “welded-joint tanks are used to store the entire amount of water purified by the purification systems within FY2018” was achieved.

By this transfer, the risk of leakage from flanged tanks was significantly reduced.
Data of Monitoring Posts (MP1-MP8) measuring the airborne radiation rate around site boundaries showed 0.420 – 1.497 µSv/h (February 27 – March 26, 2019). We improved the measurement conditions of monitoring posts 2 to 8 to measure the air-dose rate precisely. Construction work, such as tree-clearing, surface soil removal and shield wall setting, were implemented from February 10 to April 18, 2012. Therefore, monitoring results at these points are lower than elsewhere in the power plant site. The radiation shielding panels around monitoring post No. 6, which is one of the instruments used to measure the radiation dose at the power station site boundary, were taken off from July 10-11, 2013, since further deforestation, etc. had caused the surrounding radiation dose to decline significantly.
I. Confirmation of the reactor conditions

1. Temperatures inside the reactors

Through continuous reactor cooling by water injection, the temperatures of the Reactor Pressure Vessel (RPV) bottom and the Primary Containment Vessel (PCV) gas phase were maintained within the range of approx. 15 to 25°C for the past month, though varied depending on the unit and location of the thermometer.

![Temperature Graph]

2. Release of radioactive materials from the Reactor Buildings

As of February 2019, the density of radioactive materials newly released from Reactor Building Units 1-4 into the air and measured at the site boundary was evaluated at approx. 5.0 x 10^-12 Bq/cm² for Cs-134 and 3.5 x 10^-11 Bq/cm² for Cs-137, while the radiation exposure dose due to the release of radioactive materials there was less than 0.00047 mSv/year.

Annual radiation dose at site boundaries by radioactive materials (cesium) released from Reactor Building Units 1-4 for monitoring criticality, nor was any abnormality in the cold shutdown condition or criticality sign detected.

![Radioactive Material Release Graph]

II. Progress status by each plan

1. Contaminated water management

To tackle the increase in contaminated water due to groundwater inflow, fundamental measures to prevent such inflow into the Reactor Buildings will be implemented, while improving the decontamination capability of water treatment and preparing facilities to control the contaminated water.

- Status of contaminated water generated
 - Multi-layered measures, including pumping up by subdrains and land-side impermeable walls, which were implemented to control the continued generation of contaminated water, reduced the groundwater inflow into buildings.
 - Following the steady implementation of “isolation” measures (groundwater bypass subdrains, frozen walls, etc., the inflow reduced from approx. 470 m³/day (the FY2014 average) when the measures were first launched to approx. 220 m³/day (the FY2017 average), though it varied depending on rainfall, etc.
 - Measures will continue to further reduce the volume of contaminated water generated.

- Operation of the groundwater bypass
 - From April 9, 2014, the operation of 12 groundwater bypass pumping wells commenced sequentially to pump up groundwater. The release started from May 21, 2014, in the presence of officials from the Intergovernmental Liaison Office for the Decommissioning and Contaminated Water Issue of the Cabinet Office. Up until March 26, 2019, 455,059 m³ of groundwater had been released. The pumped up groundwater was temporarily stored in tanks and released after TEPCO and a third-party organization had confirmed that its quality met operational targets.
 - Pumps are inspected and cleaned as required based on their operational status.

- Water Treatment Facility special for Subdrain & Groundwater drains
 - To reduce the level of groundwater flowing into the buildings, work began to pump up groundwater from wells (subdrains) around the buildings on September 3, 2015. The pumped up groundwater was then purified at dedicated facilities and released from September 14, 2015 onwards. Up until March 26, 2019, a total of 664,387 m³ had been drained after TEPCO and a third-party organization had confirmed that its quality met operational targets.
 - Due to the rising water level of the groundwater drain pond after the sea-side impermeable walls had been closed, pumping started on November 5, 2015. Up until March 26, 2019, a total of approx. 198,468 m³ had been pumped up and a volume of under 10 m³/day is being transferred from the groundwater drain to the Turbine Buildings (average for the period February 14 – March 13, 2019).
 - As one of the multi-layered contaminated water management measures, in addition to waterproof pavement (facing; as of the end of February 2019, approx. 94% of the planned area was completed) to prevent rainwater infiltrating the ground, etc., facilities to enhance the subdrain treatment system were installed and went into operation from April 2018, increasing the treatment capacity to 1,500 m³ and improving reliability.
 - To maintain the level of groundwater pumped up from subdrains, work to install additional subdrain pits and recover those already in place is underway. The additional pits are scheduled to begin operation sequentially from a pit for which work was completed (the number of pits which went into operation: 12 of 14). For recovered pits, work for three out of three pits scheduled was completed, all of which went into operation from December 26, 2018.
To eliminate the need to suspend water pumping while cleaning the subdrain transfer pipe, the pipe will be duplicated. Installation of the pipe and ancillary facilities was completed.

Since the subdrains went into operation, the inflow into buildings tended to decline to under 150 m³/day when the subdrain water level declined below T.P. 3.0 m, but increased during rainfall.

As of March 21, 2019, the volumes treated by existing, additional and high-performance multi-nuclide removal equipment were approx. 402,000, 533,000 and 103,000 m³, respectively (including approx. 9,500 m³ stored in the J1(D) tank, which contained water with a highly concentrated radioactive materials at the System B outlet of the existing multi-nuclide removal equipment).

To reduce the risks of strontium-treated water, treatment using existing, additional and high-performance multi-nuclide removal equipment has been underway (existing: from December 4, 2015; additional: from May 27, 2015; high-performance: from April 15, 2015). Up until March 21, 2019, approx. 567,000 m³ had been treated.

Toward reducing the risk of contaminated water stored in tanks

- Treatment measures comprising the removal of strontium by cesium-adsorption apparatus (KURION) (from January 6, 2015) and the secondary cesium-adsorption apparatus (SARRRY) (from December 26, 2014) have been underway. Up until March 21, 2019, approx. 509,000 m³ had been treated.

Measures in the Tank Area

- Rainwater, under the release standard and having accumulated within the fenced-in area of the contaminated water tank area, was sprinkled on site after eliminating radioactive materials using rainwater-treatment equipment since May 21, 2014 (as of March 25, 2019, a total of 124,384 m³).

Figure 2: Correlation between inflow such as groundwater and rainfall into buildings and the water level of Unit 1-4 subdrains

- Construction status of the land-side impermeable walls
 - A operation to maintain the land-side impermeable walls and prevent the frozen soil from thickening further continued from March 2017 on the north and south sides and started from November 2017 on the east side, where frozen soil of sufficient thickness was identified. The scope of the maintenance operation was expanded in March 2018.
 - In March 2018, the land-side impermeable walls were considered completed, except for a portion of the depth, based on a monitoring result showing that the underground temperature had declined below 0°C in almost all areas, while on the mountain side, the difference between the inside and outside increased to approx. 4.5 m. Multi-layered contaminated water management measures, including subdrains and facing, have kept the groundwater level stable. Consequently, a water-level management system to isolate the buildings from groundwater was considered to have been established. The Committee on Countermeasures for Contaminated Water Treatment, held on March 7, clearly recognized the effect of the land-side impermeable walls in shielding the groundwater and evaluated that the land-side impermeable walls had allowed a significant reduction in the amount of contaminated water generated.

Operation of multi-nuclide removal equipment

- Regarding the multi-nuclide removal equipment (existing and high-performance), hot tests using radioactive water were underway (for existing equipment, System A: from March 30, 2013, System B: from June 13, 2013, System C: from September 27, 2013; and for high-performance equipment, from October 18, 2014). The additional multi-nuclide removal equipment went into full-scale operation from October 16, 2017.

As of March 21, 2019, the treated volumes of existing, additional and high-performance multi-nuclide removal equipment were approx. 402,000, 533,000 and 103,000 m³, respectively (including approx. 9,500 m³ stored in the J1(D) tank, which contained water with a highly concentrated radioactive materials at the System B outlet of the existing multi-nuclide removal equipment).

Figure 3: Closure of part of the land-side impermeable walls (on the mountain side)

- Changes in stagnant water inside buildings concentrated salt water
 - Correlation between inflow such as groundwater and rainwater into buildings and the water level of Unit 1
 - Inflow of rainwater and groundwater into buildings (m³/day)

As of March 21, 2019

Figure 4: Status of contaminated water
Completion of ALPS-treated water transfer from flanged tanks
- Transfer of ALPS-treated water stored in flanged tanks to more reliable welded-joint tanks was completed on March 27, 2019, which meant that the milestone specified in the Mid- and Long-Term Roadmap “welded-joint tanks are used to store the entire amount of water purified by the purification systems within FY2018” was achieved.
- By this transfer, the risk of leakage from flanged tanks was significantly reduced.

Status of investigation into inflow parts of the Onsite Bunker Building
- For the Onsite Bunker Building, where an ongoing increase since mid-November 2018 was confirmed, the investigation into inflow parts continues.
- Composition of water overflow in the sump tank was analyzed to check the quality of inflow water. Based on the analytic result that the water quality in the sump tank was at a level similar to that in the surrounding subdrain pit, it was highly possible that groundwater was flowing into the building.
- On March 20, 2019, the inside of the sump tank and the drain funnel on the 1st basement floor, which had yet to be checked, were investigated. Based on the investigative results, inflow from the drain funnel system pipe and remaining water in a part of the area were confirmed.
- The quality of water flowing into the sump tank and remaining water confirmed in the investigation will be analyzed to identify the parts through which water flows into the building.

Measurement results of radiation density in contaminated water in buildings and changes in the amount of radioactive materials
- The Mid- and Long-Term Roadmap set “reduction of radioactive materials and the level of contaminated water” as the goal of the contaminated water treatment in buildings.
- At the end of FY2014, the target of reducing radioactive materials was set on the assumption that contaminated water concentrations in each building were the same. However, according the progress of contaminated water treatment, high radiation concentrations were detected in some buildings, and it was difficult to evaluate them.
- Radioactive materials were reduced to about 2/10 compared to the value calculated at the end of FY2014. The treatment of radioactive materials is progressing faster than scheduled and continues to accelerate toward completion of contaminated water treatment in buildings within 2020.

Progress status of the 3rd cesium adsorption apparatus
- For the 3rd cesium-adsorption apparatus, pre-operation inspection was completed on December 4, 2018 and the certificate of completion was received on January 28, 2019.
- To further improve the performance of the apparatus, operation to verify the new adsorption material and evaluation are currently underway.

Main work to help spent fuel removal at Unit 1
- The installation of windbreak fences, which will reduce dust scattering during rubble removal, started on October 31, 2017, and was completed by December 19, 2017.
- As preparatory work for fuel removal from the spent fuel pool (SFP), rubble removal on the north side of the operating floor started from January 22, 2018.
- Rubble is being removed carefully by suction equipment. No significant variation was identified around the site boundaries where the density of radioactive materials was monitored and at onsite dust monitors during the above removal work.
- Once removed, rubble is stored in solid waste storage facilities or elsewhere depending on the dose level.
- Before formulating a plan to remove rubble around the SFP, an onsite investigation started from July 23, 2018, and was completed on August 2.
- To create an access route for preparatory work to protect the SFP, etc., work to remove four sections of X-braces (one each on the west and south sides and two on the east side, respectively) started from September 19, 2018, and all planned four sections had been removed by December 20.
- To secure an access route from the west working floor and prevent falling of small rubble from the operating floor during the work, the floor opening was covered by March 6, 2019.
- Following the covering, removal of small rubble in the east-side area around the SFP started from March 18, 2019.

Main work to help spent fuel removal at Unit 2
- Previous investigations near the opening wall on the operating floor using a remote-controlled unmanned robot detected no significant scattering obstacles that would hinder the operation of the robot.
- Contamination of the robot was below the level that would prevent maintenance by workers in the front room.
- To formulate a work plan to dismantle the Reactor Building rooftop, etc., the entire operating floor will be investigated.
- Before this investigation, work to move and contain the remaining objects was completed on November 6, 2018.
- Toward spent fuel removal, investigation after moving and containing the remaining objects inside the operating floor was completed on February 1. This investigation measured the radiation dose on the floor, walls and the ceiling inside the operating floor and confirmed the contamination status.
- From the analysis based on the investigative results, the “contamination density distribution” of the entire operating floor was obtained, based on which the airborne radiation dose rate inside the operating floor could be evaluated.
- Toward fuel removal, shielding design, measures to prevent radioactive material scattering, etc. will be examined using the “contamination density distribution.”

Progress status of measures to prevent contamination in the sea around Unit 2 (regarding the removal of existing pipes, etc. of the Unit 2 Turbine Building shed extension)
- As measures to improve the environment around the Unit 2, pipes, roof blocks, etc. of the Turbine Building shed extension, the Reactor Building shed extension and the Unit 1/2 waste treatment building, to which contamination sources are attached, will be removed. The work began with the Turbine Building shed extension from March 25, 2019.
- Anti-scattering agents are sprayed before the work and dust is monitored by the dust monitor during the work to steadily implement the work with safety first.

Main process to help fuel removal at Unit 3
- Regarding the fuel-handling machine (FHM) and crane, consecutive defects have occurred since the test operation started on March 15, 2018.
- For the FHM, an alarm was issued during the pre-operation inspection on August 8, 2018, whereupon operation was suspended. This was attributable to disconnection due to corrosion by rainwater ingress into the cable connection, and investigation of the cause detected an abnormality in several control cables.
- For the crane, an alarm was issued during the work to clear materials and equipment on August 15, 2018, and operation was suspended.
- To determine the risks of defects in fuel-handling facilities, the FHM was temporarily recovered on September 29, 2018, and a safety inspection (operation check and facility inspection) was implemented. For 14 defects detected in the safety inspection, measures were completed on January 27, 2019.
- A function check after cable replacement was completed on February 8, 2019.
- From February 14, 2019, recovery measures in the event of defect occurrence, etc. are being reviewed, and training for fuel removal using dummy fuel and transfer containers is underway.
- During the training, seven defects were detected. For six defects, which were attributable to quality control of work such as inappropriate work procedures or daily management, recurrence will be prevented by revising the procedures, etc. For the remaining defect, whose root cause was still being analyzed but location was identified, the
section was recovered by replacing the part.

- Integrity will be verified for similar parts. At the same time, it was confirmed that these seven defects were not safety problems that may lead to the falling of fuel, rubble, etc. To ensure early response in the event of defect occurrence, spare parts are being prepared.

- The rubble retrieval training inside the pool, which was scheduled in conjunction with the fuel removal training, started from March 15 and the process is being reviewed to start fuel removal within April.

➤ Progress status toward dismantling the Unit 1/2 exhaust stack

- Toward dismantling of the Unit 1/2 exhaust stack, the demonstration test of the dismantling equipment STEP 3 (verification of work procedures) will be completed in early April, 2019.

- To check the condition inside the stack, etc., an investigation before actual work will start from early April 2019 using a dedicated large crane for dismantling the exhaust stack. The investigation will include measuring radiation dose inside the stack and checking obstacles there using a camera.

- The dismantling equipment will be transferred to the site and assembled to start dismantling from mid-May 2019.

➤ Measures in response to fallen material from the Unit 3/4 exhaust stack

- In response to the detection of scaffold material having fallen from the Unit 3/4 exhaust stack on January 9, 2019, installation of a roofed safe passage was completed on March 25, 2019 as one of the safety measures.

- For the Unit 3/4 exhaust stack, an investigation using a drone was conducted on March 8 and 15, 2019 to check the parts where scaffold material had fallen and the extraordinary inspection detected potential degradation.

- Based on the investigative results, the fallen material was considered attributable to corrosion of old scaffold material installed at the time of construction. Regarding the parts where potential degradation was detected, the investigation confirmed no condition that may immediately lead to falling, but detected parts which had no scaffold material and suffered worsen corrosion, etc.

- Other exhaust stacks will be investigated using a drone and measures to reduce falling risks will be examined.

3. Retrieval of fuel debris

➤ Data collection toward optimal safety evaluation on work related to fuel debris retrieval (analytic results of contamination smear inside the Unit 2 PCV)

- To provide more accurate information concerning dust release in the safety evaluation on work related to future Unit 2 primary containment vessel (PCV) internal investigation (obstacle removal, etc.), smear at the sealing part of the internal investigation equipment, which had been covered after the internal investigation, was analyzed.

- Based on the analytic results and insight learned to date, it was assumed that α-nuclide, which was considered the main factor for internal exposure, could float less in the gas phase compared to Cs137, which was considered the main factor for external exposure, and tended to be released less to the outside of the PCV. In consideration of this assumption, the safety evaluation is being optimized.

- Examination concerning the expansion of α-nuclide will be deepened while collecting and analyzing onsite data to further improve the safety evaluation.

4. Plans to store, process and dispose of solid waste and decommission of reactor facilities

Promoting efforts to reduce and store waste generated appropriately and R&D to facilitate adequate and safe storage, processing and disposal of radioactive waste

➤ Management status of the rubble and trimmed trees

- As of the end of February 2019, the total storage volume of concrete and metal rubble was approx. 264,000 m³ (+1,900 m³ compared to at the end of January, with an area-occupation rate of 66%). The total storage volume of trimmed trees was approx. 134,000 m³ (with a slight increase, with an area-occupation rate of 76%). The total storage volume of used protective clothing was approx. 55,500 m³ (+1,300 m³, with an area-occupation rate of 78%). The increase in rubble was mainly attributable to construction related to tanks and acceptance of unclaimed items within the site. The increase in used protective clothing was mainly attributable to acceptance of used protective clothing.

➤ Management status of secondary waste from water treatment

- As of March 7, 2019, the total storage volume of waste sludge was 597 m³ (area-occupation rate: 85%), while that of concentrated waste fluid was 9,330 m³ (area-occupation rate: 91%). The total number of stored spent vessels, High-Integrity Containers (HICs) for multi-nuclide removal equipment, etc., was 4, 300 (area-occupation rate: 67%).

5. Reactor cooling

The cold shutdown condition will be maintained by cooling the reactor by water injection and measures to complement the status monitoring will continue

➤ Test to check the cooling condition of the Unit 2 fuel debris

- Currently the decay heat of fuel debris has declined significantly over time.

- Water injection into the reactor will be temporarily reduced and suspended to grasp the status of the cooling condition of fuel debris. This will lead to the enhancement of emergency response procedures and the optimization of operation and maintenance.

- For Unit 2, offering highly reliable temperature measurement, tests to reduce the water injection volume from 3.0 to 1.5m³/h (for about seven days) and suspend injection (for about 7 hours) will be conducted in April and May 2019, respectively.

6. Reduction in radiation dose and mitigation of contamination

Effective dose-reduction at site boundaries and purification of port water to mitigate the impact of radiation on the external environment

➤ Status of groundwater and seawater on the east side of Turbine Building Units 1-4

- The H+ density at No. 0-3 had been increasing from around 120 Bq/L since October 2018 to around 1,900 Bq/L, and then declined. It currently stands at the level before the increase.

- Since March 2018, the H+ density at No. 1-6 has been repeatedly declining and increasing. It currently stands at around 2,300 Bq/L.

- The H+ density at No. 1-8 had been increasing from around 2,000 Bq/L since December 2018, and currently stands at around 3,800 Bq/L.

- The density of gross β radioactive materials at No. 1-12 had been decreasing from around 800 Bq/L since September 2018 to around 200 Bq/L. It has since been increasing, and currently stands at around 2,400 Bq/L. Since August 15, 2013, pumping of ground water continued (at the well point between the Unit 1 and 2 intakes: August 15, 2013 - October 13, 2015 and from October 24; at the repaired well: October 14 - 23, 2015).

- The H+ density at No. 2-3 had been increasing since November 2017, and then remained constant at around 5,000 Bq/L. It currently stands at around 4,000 Bq/L. The density of gross β radioactive materials at the same point had been decreasing from around 600 Bq/L since December 2017, and currently stands at around 9,000 Bq/L.

- The H+ density at No. 2-5 had been increasing from around 1,200 Bq/L since December 2018, and currently stands at around 2,400 Bq/L. The density of gross β radioactive materials at the same point had been increasing from around 30,000 Bq/L since December 2018, and currently stands at around 80,000 Bq/L. Since December 18, 2013, pumping of ground water continued (at the well point between the Unit 2 and 3 intakes: December 18, 2013 - October 13, 2015; at the repaired well: from October 14, 2015).

- Regarding the radioactive materials in seawater in the Unit 1-4 intake open channel area, densities have remained below the legal discharge limit except for the increase in Cs-137 and Sr-90 during rain. They have also been declining following the completed installation and the connection of steel pipe sheet piles for the sea-side impermeable walls. The density of Cs-137 has been increasing since January 25, 2017, when a new silt fence was installed to accommodate the relocation.
Regarding the radioactive materials in seawater in the area within the port, densities have remained below the legal discharge limit, except for the increase in Cs-137 and Sr-90 during rain. They have been below the level of those in the Unit 1-4 intake open channel area and have been declining following the completed installation and connection of steel pipe sheet piles for the sea-side impermeable walls.

Regarding the radioactive materials in seawater in the area outside the port, densities of Cs-137 and Sr-90 have been declining, but remained unchanged following the completed installation and the connection of steel pipe sheet piles for the sea-side impermeable walls.

7. Outlook of the number of staff required and efforts to improve the labor environment and conditions

Securing appropriate staff long-term while thoroughly implementing workers’ exposure dose control. Improving the work environment and labor conditions continuously based on an understanding of workers’ on-site needs

- **Staff management**
 - The monthly average total of personnel registered for at least one day per month to work on site during the past quarter from November 2018 to January 2019 was approx. 9,500 (TEPCO and partner company workers), which exceeded the monthly average number of actual workers (approx. 7,200). Accordingly, sufficient personnel are registered to work on site.
 - It was confirmed with the prime contractors that the estimated manpower necessary for the work in April 2019 (approx. 4,300 per day: TEPCO and partner company workers) would be secured at present. The average numbers of workers per day per month (actual values) were maintained, with approx. 4,000 to 6,200 since FY2016 (see Figure 7).
 - The number of workers increased from both within and outside Fukushima Prefecture. The local employment ratio (TEPCO and partner company workers) as of February 2019 has remained constant at around 60%.
 - The monthly average exposure dose of workers remained at approx. 0.59 mSv/month during FY2015, approx. 0.39 mSv/month during FY2016 and approx. 0.36 mSv/month during FY2017. (Reference: Annual average exposure dose 20 mSv/year ≈ 1.7 mSv/month)
 - For most workers, the exposure dose was sufficiently within the limit and allowed them to continue engaging in radiation work.
Measures to prevent infection and expansion of influenza and norovirus
- Since November 2018, measures for influenza and norovirus have been implemented, including free influenza vaccinations (subsidized by TEPCO HD) at the Fukushima Daiichi Nuclear Power Station (from October 24 to November 30, 2018) and medical clinics around the site (from November 1, 2018 to January 31, 2019) for partner company workers. As of January 31, 2019, a total of 6,330 workers had been vaccinated. In addition, a comprehensive range of other measures is also being implemented, including daily actions to prevent infection and expansion (measuring body temperature, health checks and monitoring infection status) and response after detecting possible infections (swift exit of potentially affected personnel and control of entry, mandatory mask-wearing in working spaces, etc.).

Status of influenza and norovirus cases
- Until the 12th week of 2019 (March 18-24, 2019), 305 influenza infections and 12 norovirus infections were recorded. The totals for the same period for the previous season showed 304 cases of influenza and 11 norovirus infections.
Status of seawater monitoring within the port (comparison between the highest values in 2013 and the latest values)

“The highest value” → “the latest value (sampled during March 18-26)”; unit (Bq/L); ND represents a value below the detection limit

Source: TEPCO website Analysis results on nuclides of radioactive materials around Fukushima Daiichi Nuclear Power Station http://www.tepco.co.jp/nu/fukushima-np/ft/smp/index-j.html

<table>
<thead>
<tr>
<th>Nuclide</th>
<th>Date</th>
<th>Value</th>
<th>Limit</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cesium-134</td>
<td>2013/12/24</td>
<td>ND(0.49)</td>
<td>Below 1/6</td>
<td></td>
</tr>
<tr>
<td>Cesium-137</td>
<td>2013/10/11</td>
<td>0.83</td>
<td>Below 1/8</td>
<td></td>
</tr>
<tr>
<td>Gross β</td>
<td>2013/8/19</td>
<td>ND(16)</td>
<td>Below 1/4</td>
<td></td>
</tr>
<tr>
<td>Tritium</td>
<td>2013/8/19</td>
<td>ND(1.6)</td>
<td>Below 1/40</td>
<td></td>
</tr>
<tr>
<td>Cesium-134</td>
<td>2013/12/24</td>
<td>ND(0.49)</td>
<td>Below 1/6</td>
<td></td>
</tr>
<tr>
<td>Cesium-137</td>
<td>2013/10/11</td>
<td>0.83</td>
<td>Below 1/8</td>
<td></td>
</tr>
<tr>
<td>Gross β</td>
<td>2013/8/19</td>
<td>ND(16)</td>
<td>Below 1/4</td>
<td></td>
</tr>
<tr>
<td>Tritium</td>
<td>2013/8/19</td>
<td>ND(1.6)</td>
<td>Below 1/40</td>
<td></td>
</tr>
<tr>
<td>Cesium-134</td>
<td>2013/10/17</td>
<td>ND(0.27)</td>
<td>Below 1/10</td>
<td></td>
</tr>
<tr>
<td>Cesium-137</td>
<td>2013/10/17</td>
<td>0.49</td>
<td>Below 1/10</td>
<td></td>
</tr>
<tr>
<td>Gross β</td>
<td>2013/8/19</td>
<td>19</td>
<td>Below 1/4</td>
<td></td>
</tr>
<tr>
<td>Tritium</td>
<td>2013/8/19</td>
<td>ND(1.8)</td>
<td>Below 1/30</td>
<td></td>
</tr>
<tr>
<td>Cesium-134</td>
<td>2013/11/11</td>
<td>ND(0.47)</td>
<td>Below 1/60</td>
<td></td>
</tr>
<tr>
<td>Cesium-137</td>
<td>2013/10/11</td>
<td>1.1</td>
<td>Below 1/60</td>
<td></td>
</tr>
<tr>
<td>Gross β</td>
<td>2013/8/12</td>
<td>17</td>
<td>Below 1/10</td>
<td></td>
</tr>
<tr>
<td>Tritium</td>
<td>2013/9/2</td>
<td>15</td>
<td>Below 1/30</td>
<td></td>
</tr>
</tbody>
</table>

From February 11, 2017, the location of the sampling point was shifted approx. 50 m south of the previous point due to the location shift of the silt fence.

Note: The gross β measurement values include natural potassium 40 (approx. 12 Bq/L). They also include the contribution of yttrium 90, which radioactively balance strontium 90.

Summary of TEPCO data as of March 27, 2019
Status of seawater monitoring around outside of the port (comparison between the highest values in 2013 and the latest values)

(The latest values sampled during March 18-26)

Unit (Bq/L); ND represents a value below the detection limit; values in () represent the detection limit; ND (2013) represents ND throughout 2013

<table>
<thead>
<tr>
<th>Location</th>
<th>Cesium-134</th>
<th>Cesium-137</th>
<th>Gross β</th>
<th>Tritium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Northeast side of port entrance (offshore 1km)</td>
<td>ND (2013) → ND (0.71)</td>
<td>ND (2013) → ND (0.78)</td>
<td>ND (2013) → ND (15)</td>
<td>ND (2013) → ND (0.91)</td>
</tr>
<tr>
<td>East side of port entrance (offshore 1km)</td>
<td>Cesium-134: ND (2013) → ND (0.54)</td>
<td>Cesium-137: 1.6 (2013/10/18) → ND (0.64) Below 1/2</td>
<td>Gross β: ND (2013) → ND (15)</td>
<td>Tritium: 6.4 (2013/10/18) → ND (0.91) Below 1/7</td>
</tr>
<tr>
<td>North side of north breakwater (offshore 0.5km)</td>
<td>Cesium-134: ND (2013) → ND (0.62)</td>
<td>Cesium-137: ND (2013) → ND (0.58)</td>
<td>Gross β: ND (2013) → ND (15)</td>
<td>Tritium: 4.7 (2013/8/18) → ND (0.91) Below 1/5</td>
</tr>
<tr>
<td>North side of Unit 5 and 6 release outlet</td>
<td>Cesium-134: 1.8 (2013/6/21) → ND (0.50) Below 1/3</td>
<td>Cesium-137: 4.5 (2013/3/17) → ND (0.45) Below 1/10</td>
<td>Gross β: 12 (2013/12/23) → 9.3</td>
<td>Tritium: 8.6 (2013/6/26) → ND (0.91) Below 1/9</td>
</tr>
<tr>
<td>Southeast side of port entrance (offshore 1km)</td>
<td>Cesium-134: ND (2013) → ND (0.62)</td>
<td>Cesium-137: ND (2013) → ND (0.60)</td>
<td>Gross β: ND (2013) → ND (15)</td>
<td>Tritium: ND (2013) → ND (0.91)</td>
</tr>
<tr>
<td>South side of south breakwater (offshore 0.5km)</td>
<td>Cesium-134: 3.3 (2013/12/24) → ND (0.49) Below 1/6</td>
<td>Cesium-137: 7.3 (2013/10/11) → 0.83 Below 1/8</td>
<td>Gross β: 69 (2013/8/19) → ND (16) Below 1/4</td>
<td>Tritium: 68 (2013/8/19) → ND (1.6) Below 1/40</td>
</tr>
<tr>
<td>Near south release outlet</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sea side impermeable wall</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silt fence</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: The gross β measurement values include natural potassium 40 (approx. 12 Bq/L). They also include the contribution of yttrium 90, which radioactively balance strontium 90.

Summary of TEPCO data as of March 27, 2019

Note: Because safety of the sampling points was unassured due to the influence of Typhoon No. 10 in 2016, samples were taken from approx. 330 m south of the Unit 1-4 release outlet. Samples were also taken from a point approx. 280m south from the same release outlet from January 27, 2017 and approx. 320m from March 23, 2018.
Progress toward decommissioning: Fuel removal from the spent fuel pool (SFP)

Unit 1

Regarding fuel removal from Unit 1 spent fuel pool, there is a plan to install a dedicated cover for fuel removal over the top floor of the Reactor Building (operating floor). All roof panels and wall panels of the building cover were dismantled by November 10, 2016. Removal of pillars and beams of the building was completed on May 11, 2017. Modification of the pillars and beams of the building cover and installation of building cover were completed by December 19. Rubble removal from the operating floor north side started from January 22, 2018. Rubble is being removed carefully by suction equipment. No significant variation was identified around site boundaries where the density of radioactive materials was monitored and at onsite dust monitors during the above removal work.

Unit 2

To facilitate removal of fuel assemblies and retrieval of debris in the Unit 2 spent fuel pool, the scope of dismantling and modification of the existing Reactor Building rooftop was examined. From the perspective of ensuring safety during the work, controlling impacts on the outside of the power station, and removing fuel rapidly to reduce risks, we decided to dismantle the whole rooftop above the highest floor of the Reactor Building. Examination of the following two plans continues: Plan 1 to share a container for removing fuel assemblies from the pool and retrieving fuel debris; and Plan 2 to install a dedicated cover for fuel removal from the pool.

Unit 3

Prior to the installation of a cover for fuel removal, removal of large rubble from the spent fuel pool was completed in November 2015. To ensure safe and steady fuel removal, training of remote control was conducted at the factory using the actual fuel-handling machine which will be installed on site (February – December 2015). Measures to reduce dose on the Reactor Building top floor (decontamination, shields) were completed in December 2016. Installation of a cover for fuel removal and a fuel-handling machine is underway from January 2017. Installation of the fuel removal cover was completed on February 23, 2018. Toward fuel removal, the rubble retrieval training inside the pool, which was scheduled in conjunction with fuel removal training, started from March 15, 2019, and the process is being reviewed to start fuel removal within April 2019.

Unit 4

In the Mid- and Long-Term Roadmap, the target of Phase 1 involved commencing fuel removal from inside the spent fuel pool (SFP) of the 1st Unit within two years of completion of Step 2 (by December 2013). On November 18, 2013, fuel removal from Unit 4, or the 1st Unit, commenced and Phase 2 of the roadmap started.

On November 5, 2014, within a year of commencing work to fuel removal, all 1,331 spent fuel assemblies in the pool had been transferred. The transfer of the remaining non-irradiated fuel assemblies to the Unit 6 SFP was completed on December 22, 2014. (2 of the non-irradiated fuel assemblies were removed in advance in July 2012 for fuel checks)

This marks the completion of fuel removal from the Unit 4 Reactor Building. Based on this experience, fuel assemblies will be removed from Unit 1-3 pools.

* A part of the photo is corrected because it includes sensitive information related to physical protection.

Glossary

1. Operating floor: During regular inspection, the roof over the reactor is opened while on the operating floor, fuel inside the core is replaced and the core internals are inspected.
2. Cask: Transportation container for samples and equipment, including radioactive materials.
Investigation into TIP Room of the Unit 1 Reactor Building

- To improve the environment for future investigations inside the PCV, etc., an investigation was conducted from September 24 to October 2, 2015 at the TIP Room\(^{(1)}\). (Due to high dose around the entrance in to the TIP Room, the investigation of dose rate and contamination distribution was conducted through a hole drilled from the walkway of the Turbine Building, where the dose was low.)
- The investigative results identified high dose at X-31 to 33 penetrations\(^{(2)}\) (instrumentation penetration) and low dose at other parts.
- As it was confirmed that work inside the TIP room would be available, the next step will include identification of obstacles which will interfere the work inside the TIP Room and formulation of a plan for dose reduction.

Unit 1

<table>
<thead>
<tr>
<th>Period</th>
<th>Evaluation results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feb - May 2015</td>
<td>Confirmed that there was no large fuel in the reactor core.</td>
</tr>
</tbody>
</table>

Investigation in the leak point detected in the upper part of the Unit 1 Suppression Chamber (S/C)*\(^{(3)}\)

Investigation in the leak point detected in the upper part of Unit 1 S/C from May 27, 2014 from one expansion joint cover among the lines installed there. As no leakage was identified from other parts, specific methods will be examined to halt the flow of water and repair the PCV.

Status of investigation inside the PCV

Prior to fuel debris retrieval, an investigation inside the PCV will be conducted to inspect the status there including the location of fuel debris.

Investigative outline

- In April 2015, a device, which entered the inside of the PCV through a narrow access opening (bore: φ 100 mm), collected information such as images and airborne dose inside the PCV 1st floor.
- In March 2017, the investigation using a self-propelled investigation device, conducted to inspect the spreading of debris to the basement floor outside the pedestal, took images of the PCV bottom status for the first time. The status inside the PCV will continue to be examined based on the collected image and dose data.

Capturing the location of fuel debris inside the reactor by measurement using muons

<table>
<thead>
<tr>
<th>Period</th>
<th>Evaluation results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feb - May 2015</td>
<td>Confirmed that there was no large fuel in the reactor core.</td>
</tr>
</tbody>
</table>

\(^{(1)}\) TIP (Traversing In-core Probe)
\(^{(2)}\) Penetration: Through-hole of the PCV
\(^{(3)}\) SFP (Spent Fuel Pool): Suppression pool used as the water source for the emergent core cooling system.
\(^{(4)}\) RPV (Reactor Pressure Vessel)
\(^{(5)}\) PCV (Primary Containment Vessel)
Installation of an RPV thermometer and permanent PCV supervisory instrumentation

(1) Replacement of the RPV thermometer
- As the thermometer installed at the Unit 2 RPV bottom after the earthquake had broken in February 2014, it was excluded from the monitoring thermometers.
- In April 2014, removal of the broken thermometer failed and was suspended. Rust-stripping chemicals were injected and the broken thermometer was removed in January 2015. A new thermometer was reinstalled in March. The thermometer has been used as a part of permanent supervisory instrumentation since April.

(2) Reinstallation of the PCV thermometer and water-level gauge
- Some of the permanent supervisory instrumentation for PCV could not be installed in the planned locations due to interference with existing gratings (August 2013). The instrumentation was removed in May 2014 and new instruments were reinstalled in June 2014. The trend of added instrumentation will be monitored for approx. one month to evaluate its validity.
- The measurement during the installation confirmed that the water level inside the PCV was approx. 300mm from the bottom.

Investigative results on torus chamber walls
- The torus chamber walls were investigated (on the north side of the east-side walls) using equipment specially developed for that purpose (a swimming robot and a floor traveling robot).
- At the east-side wall pipe penetrations (five points), "the status" and "existence of flow" were checked.
- A demonstration using the above two types of underwater wall investigative equipment showed how the equipment could check the status of penetration.
- Regarding Penetrations 1 - 5, the results of checking the sprayed tracer (*7) by camera showed no flow around the penetrations. (investigation by the swimming robot)
- Regarding Penetration 3, a sonar check showed no flow around the penetrations. (investigation by the floor traveling robot)

Status of investigation inside the PCV
Prior to fuel debris retrieval, an investigation inside the PCV will be conducted to inspect the status there including the location of fuel debris.

[Investigative outline]
- Investigative devices such as a robot will be injected from Unit 2 X-6 penetration (*7) and access the inside of the pedestal using the CRD rail.

[Progress status]
- On January 26 and 30, 2017, a camera was inserted from the PCV penetration to inspect the status of the CRD replacement rail on which the robot will travel. On February 9, draft on the access route of the self-propelled investigative device was removed and on February 16, the inside of the PCV was investigated using the device.
- The results of this series of investigations confirmed fallen and deformed gratings and a quantity of deposit inside the pedestal.
- On January 19, 2018, the status below the platform inside the pedestal was investigated using an investigative device with a mechanism. From the analytical results of images obtained in the investigation, deposits probably including fuel debris were found at the bottom of the pedestal. In addition, multiple parts higher than the surrounding deposits were also detected. We presumed that there were multiple routes of fuel debris failing. Obtained data were processed in panoramic image visualization to acquire clearer images.
- On February 13, 2019, an investigation touching the deposits at the bottom of the pedestal and on the platform was conducted and confirmed that the pebble-shaped deposits, etc. could be moved and that hard rock-like deposits that could not be gripped may exist.
- In addition, images, etc. would help determine the contour and size of the deposits could be collected by moving the investigative unit closer to the deposits than the previous investigation.

Capturing the location of fuel debris inside the reactor by measurement using muons

* Indices related to plant are values as of 11:00, March 27, 2019
Investigative results into the Unit 3 PCV equipment hatch using a small investigation device

- As part of the investigation into the PCV to facilitate fuel debris retrieval, the status around the Unit 3 PCV equipment hatch was investigated using a small self-traveling investigation device on November 26, 2015.
- Given blots such as rust identified below the water level inside the PCV, there may be a leakage from the seal to the extent of bleeding.
- Methods to investigate and repair the parts, including other PCV penetrations with a similar structure, will be considered.

Investigation inside the PCV

Prior to fuel debris retrieval, the inside of the Primary Containment Vessel (PCV) was investigated to identify the status there including the location of the fuel debris.

[Investigative outline]
- The status of X-53 penetration(*4), which may be under the water and which is scheduled for use to investigate the inside of the PCV, was investigated using remote-controlled ultrasonic test equipment. The results showed that the penetration was not under the water (October 22-24, 2014).
- For the purpose of confirming the status inside the PCV, an investigation device was inserted into the PCV from X-53 penetration on October 20 and 22, 2015 to obtain images, data of dose and temperature and sample stagnant water. No damage was identified on the structure and walls inside the PCV and the water level was almost identical with the estimated value. In addition, the dose inside the PCV was confirmed to be lower than in other Units.
- In July 2017, the inside of the PCV was investigated using the underwater ROV (remotely operated underwater vehicle) to inspect the inside of the pedestal.
- Analysis of image data obtained in the investigation identified damage to multiple structures and the supposed core internals. Consideration about fuel removal based on the obtained information will continue.
- Videos obtained in the investigation were reproduced in 3D. Based on the reproduced images, the relative positions of the structures, such as the rotating platform slipping off the rail with a portion buried in deposits, were visually understood.

Capturing the location of fuel debris inside the reactor by measurement using muons

<table>
<thead>
<tr>
<th>Period</th>
<th>Evaluation results</th>
</tr>
</thead>
<tbody>
<tr>
<td>May – Sep 2017</td>
<td>The evaluation confirmed that no large lump existed in the core area where fuel had been placed and that part of the fuel debris potentially existed at the bottom of the RPV.</td>
</tr>
</tbody>
</table>

<Glossary>
- (1) SFP (Spent Fuel Pool)
- (2) RPV (Reactor Pressure Vessel)
- (3) PCV (Primary Containment Vessel)
- (4) Penetration: Through-hole of the PCV
Work to improve the reliability of the circulation water injection cooling system and pipes to transfer stagnant water:

- Operation of the reactor water injection system using Unit 3 Condensate Storage Tank (CST) as a water source commenced (from July 5, 2013). Compared to the previous systems, the reliability of the reactor water injection system was enhanced, e.g. by increasing the amount of water-source storage and enhancing durability.
- To reduce the risk of contaminated-water leakage, the circulation loop was shortened by installing a reverse osmosis (RO) device in the Unit 4 Turbine Building within the circulation loop, comprising the transfer of contaminated water, water treatment and injection into the reactors. Operation of the installed RO device started from October 7 and 24-hour operation started from October 20. Installation of the new RO device inside the building shortened the circulation loop from approx. 3 to 0.8 km.
- To accelerate efforts to reduce the radiation density inside the buildings, circulating purification of stagnant water inside the buildings started on the Unit 3 and 4 side on February 22 and on the Unit 1 and 2 side on April 11.
- For circulating purification, a new pipe divided from the water treatment equipment outlet line was installed to transfer water purified at the water treatment equipment to the Unit 1 Reactor Building and the Unit 2-4 Turbine Buildings.
- The risks of stagnant water inside the buildings will continue to be reduced in addition to reduction of its storage.

* The entire length of contaminated water transfer pipes is approx. 2.1 km, including the transfer line of surplus water to the upper heights (approx. 1.3 km).

Progress status of dismantling of flange tanks:

- To facilitate replacement of flanged tanks, dismantling of flanged tanks started in H1 east/H2 areas in May 2015. Dismantling of all flanged tanks was completed in H1 east area (12 tanks) in October 2015, in H2 area (28 tanks) in March 2016, in H4 area (56 tanks) in May 2017, in H3 B area (31 tanks) in September 2017, in H5 and H5 north areas (31 tanks) in June 2018, in G6 area (38 tanks) in July 2018, H6 and H6 north areas (24 tanks) in September 2018 and G4 south area (17 tanks) in March 2019.

Completion of purification of contaminated water (RO concentrated salt water):

Contaminated water (RO concentrated salt water) is being treated using several types of equipment including the multi-nuclide removal equipment (ALPS). Treatment of the RO concentrated salt water was completed on May 27, 2015, with the exception of the remaining equipment including the multi-nuclide removal equipment which will be re-purified until the multi-nuclide removal equipment to further reduce risks.

Preventing groundwater from flowing into the Reactor Buildings:

Reducing groundwater inflow by pumping sub-drain water:

To reduce groundwater flowing into the buildings, pumping-up of groundwater from wells (sub-drains) around the buildings started on September 3, 2013. Pumped-up groundwater was purified at dedicated facilities and released after TEPCO and a third-party organization confirmed that its quality met operational targets.

Via a groundwater bypass, reduce the groundwater level around the Building and groundwater inflow into the Building:

Measures to pump up groundwater flowing from the mountain side upstream of the Building to reduce the groundwater inflow (groundwater bypass) have been implemented.

The pumped up groundwater is temporarily stored in tanks and released after TEPCO and a third-party organization have confirmed that its quality meets operational targets. Through periodic monitoring, pumping of wells and tanks is operated appropriately.

At the observation holes installed at a height equivalent to the buildings, the trend showing a decline in groundwater levels is checked.

The analytical results on groundwater inflow into the buildings based on existing data showed a declining trend. Installing land-side impermeable walls with frozen soil around Units 1-4 to prevent the inflow of groundwater into the building:

To prevent the inflow of groundwater into the buildings, installation of impermeable walls on the land side is planned. Freeing started on the sea side and at a part of the mountain side from March 2016 and reached 95% of the mountain side from June 2016. Freeing of the remaining unfrozen sections advanced with a phased approach and freezing of all sections started in August 2017.

In March 2019, the land-side impermeable walls were considered completed except for a portion of the depths based on a monitoring result showing that the underground temperature had declined below 0°C in almost all areas and on the mountain side, the difference between the inside and outside increased to approx. 4.5 m. The multi-layered contaminated water management measures, including sub-drains and freezing, have kept the groundwater level stable. Consequently, a water-level management system to isolate the buildings from groundwater was considered to have been established. The Committee on Countermeasures for Contaminated Water Treatment held on March 7 clearly recognized the effect of the land-side impermeable walls in shielding groundwater and evaluated that the land-side impermeable walls allowed for a significant reduction in the amount of contaminated water generated.
Progress toward decommissioning: Work to improve the environment within the site

Immediate targets

- Reduce the effect of additional release from the entire power station and radiation from radioactive waste (secondary water treatment waste, rubble, etc.) generated after the accident, to limit the effective radiation dose to below 1mSv/year at the site boundaries.
- Prevent contamination expansion in sea, decontamination within the site

Optimization of radioactive protective equipment

Based on the progress of measures to reduce environmental dosage on site, the site is categorized into two zones: highly contaminated area around Unit 1-4 buildings, etc. and other areas to optimize protective equipment according to each category aiming at improving safety and productivity by reducing load during work. From March 2016, limited operation started. From March and September 2017, the G Zone was expanded.

Installation of dose-rate monitors

To help workers in the Fukushima Daiichi Nuclear Power Station precisely understand the conditions of their workplaces, a total of 86 dose-rate monitors were installed by January 4, 2016. These monitors allow workers to confirm real time on-site dose rates at their workplaces. Workers are also able to check concentrated data through large-scale displays installed in the Main Anti-Earthquake Building and the access control facility.

Installation of sea-side impermeable walls

To prevent the outflow of contaminated water into the sea, sea-side impermeable walls have been installed. Following the completed installation of steel pipe sheet piles on September 22, 2015, connection of these piles was conducted and connection of sea-side impermeable walls was completed on October 26, 2015. Through these works, closure of sea-side impermeable walls was finished and the contaminated water countermeasures have been greatly advanced.

Status of the large rest house

A large rest house for workers was established and its operation commenced on May 31, 2015. Spaces in the large rest house are also installed for office work and collective worker safety checks as well as taking rest. On March 1, 2016 a convenience store opened in the large rest house. On April 11, operation of the shower room started. Efforts will continue to improve convenience of workers.