Main decommissioning works and steps

All fuel has been removed from Unit 4 SFP and preparatory work to fuel removal from Unit 1-3 SFP and fuel debris (Note 1) retrieval is ongoing.

(Fuel Debris Retrieval)

Fuel Debris Retrieval

1. Fuel Removal from SFP
2. Rubble removal & dose reduction
3. Installing a Fuel removal handling Machine
4. Fuel removal
5. Storage and handling

Unit 1: Fuel removal scheduled to start in FY2023
Unit 2: Fuel removal scheduled to start in FY2023
Unit 3: Fuel removal scheduled to start around mid-FY2018
Unit 4: Fuel removal completed in 2014

(Note 2) The method employed to fuel debris retrieval for the first unit will be confirmed in FY2019.

(Dismantling Facilities)

Dismantling Facilities

1. Scenario development & technology consideration
2. Design and manufacturing of devices / equipment
3. Dismantling

Three principles behind contaminated water countermeasures:

Countermeasures for contaminated water are implemented in accordance with the following three principles:

1. Eliminate contamination sources
 1. Multi-nuclide removal equipment, etc.
 2. Remove contaminated water from the trench (Note 3)
 (Note 3) Underground tunnel containing pipes.

2. Isolate water from contamination
 3. Pump up groundwater for bypassing
 4. Pump up groundwater near buildings
 5. Land-side impermeable walls
 6. Waterproof pavement

3. Prevent leakage of contaminated water
 7. Enhance soil by adding sodium silicate
 8. Sea-side impermeable walls
 9. Increase the number of (welded-joint) tanks

Multi-nuclide removal equipment (ALPS), etc.

- This equipment removes radionuclides from the contaminated water in tanks and reduces risks.
- Treatment of contaminated water (RO concentrated salt water) was completed in May 2015 via multi-nuclide removal equipment, additional multi-nuclide removal equipment installed by TEPCO (operation commenced in September 2014) and a subsidy project of the Japanese Government (operation commenced in October 2014).
- Strontium-treated water from equipment other than ALPS is being re-treated in ALPS.

Land-side impermeable walls

- Land-side impermeable walls surround the buildings and reduce groundwater inflow into the same.
- Freezing started on the sea side and part of the mountain side from March 2016 and on 95% of the mountain side from June 2016. Freezing of the remaining unfrozen sections advanced with a phased approach and freezing of all sections started in August 2017.
- On the sea side, the underground temperature declined below 0°C throughout the scope requiring freezing, except for the unfrozen parts under the seawater pipe trenches and the areas above groundwater level in October 2016.

Sea-side impermeable walls

- Impermeable walls are being installed on the sea side of Units 1-4, to prevent contaminated groundwater from flowing into the sea.
- The installation of steel pipe sheet piles was completed in September 2015 and they were connected in October 2015. These works completed the closure of the sea-side impermeable walls.
Investigation inside the Unit 2 PCV

The inside of the Unit 2 PCV will be investigated from January 2018. For this investigation, the investigative device was upgraded based on the experience of the previous investigation (January – February 2017) to improve visibility. A hanging mechanism was added and a thermometer and dosimeter were mounted on the device to investigate the bottom of the pedestal. The investigation will proceed carefully not to affect the surrounding environment.

Completion of water removal from the Unit 1-3 condensers

Stagnant water in the building at the time of the accident has been stored in the Unit 1-3 condensers. On December 15, water removal from the remaining Unit 3 condenser was completed. By a series of removal, the amount of radioactive materials in stagnant water was reduced by approx. 20%.

Work will continue toward completion of stagnant water treatment in buildings within 2020.

Results of the questionnaire survey for workers to improve the work environment

With the aim of improving the work environment at the Fukushima Daiichi Nuclear Power Station, the 8th questionnaire survey was conducted, to which approx. 5,500 workers responded (collection rate: approx. 91%, a 2.6% increase compared to the previous survey). As in the previous year, more than 85% of respondents evaluated the major efforts having been made for improvement as “good” and “reasonably good.” Efforts to improve the work environment will continue based on opinions and requests received from workers.

An investigation into the actual conditions was also conducted into items concerning the working conditions for which a follow-up investigation was considered necessary and prime contractors / employer companies were indicated in the questionnaire answers (indication of company names was not mandated). The investigative results confirmed that the working conditions were appropriate. Efforts to ensure appropriate labor conditions will continue under the guidance of regulatory authorities.

Status of the land-side impermeable walls

Multi-layered contaminated water management, including the land-side impermeable walls and enhancement of the subdrains, is being implemented. The amount of groundwater flowing into buildings, etc. has been reduced as an effect of these measures. Though temporarily increased due to the influence of typhoons in October, the amount returned to the same level before the typhoons within a shorter period than the previous year. On December 18, the pumped up volume in the bank area was reduced to the lowest level ever recorded (64m³/day).

Monitoring of the underground temperature, water levels and pumped-up groundwater volume will continue to confirm the effects of the land-side impermeable walls and the overall contaminated water management including the land-side impermeable walls.

Installation completion of the Unit 1 windbreak fences

Preparation for fuel removal from the Unit 1 spent fuel pool is underway. Installation of windbreak fences to further reduce dust scattering during rubble removal from the operating floor was completed on December 19.

The dose rate on the operating floor will be measured in mid-January prior to starting rubble removal, which will start once preparation is completed.

Installation of the Unit 3 fuel removal cover

As preparatory work for fuel removal from Unit 3, the fuel removal cover is being installed. Installation of the eighth Dome Roof (consists of eight) was completed on December 12. Following hanging of the slide trestle, the sixth and seventh Dome Roofs will be installed in February.

Preparation will continue toward fuel removal in mid-FY2018.

Investigation inside the Unit 2 PCV

The temperatures of the Reactor Pressure Vessel (RPV) and Primary Containment Vessel (PCV) of Units 1-3 have been maintained within the range of approx. 15-30°C over the past month. There was no significant change in the density of radioactive materials newly released from Reactor Buildings in the air. It was evaluated that the comprehensive cold shutdown condition had been maintained.

* The values varied somewhat, depending on the unit and location of the thermometer.

The annual radiation dose from natural radiation is approx. 2.1 mSv/year (average in Japan).

The inside of the Unit 2 PCV will be investigated from January 2018. For this investigation, the investigative device was upgraded based on the experience of the previous investigation (January – February 2017) to improve visibility. A hanging mechanism was added and a thermometer and dosimeter were mounted on the device to investigate the bottom of the pedestal. The investigation will proceed carefully not to affect the surrounding environment.

Overview of the investigative device edge

* A mechanism capable of keeping a distance between the camera and the light was added to improve visibility.
Data of Monitoring Posts (MP1-MP8.)

Data (10-minute values) of Monitoring Posts (MPs) measuring the airborne radiation rate around site boundaries show 0.483 – 1.784 μSv/h (November 29 – December 19, 2017). We improved the measurement conditions of monitoring posts 2 to 8 to measure the air-dose rate precisely. Construction works, such as tree-clearing, surface soil removal and shield wall setting, were implemented from February 10 to April 18, 2012. Therefore monitoring results at these points are lower than elsewhere in the power plant site.

The radiation shielding panels around monitoring post No. 6, which is one of the instruments used to measure the radiation dose at the power station site boundary, were taken off from July 10-11, 2013, since further deforestation, etc. has caused the surrounding radiation dose to decline significantly.

Major initiatives – Locations on site

Completion of water removal from the Unit 1-3 condensers

Installation of the Unit 3 fuel removal cover

Installation completion of the Unit 1 windbreak fences

Status of the land-side impermeable walls

Removal of the Unit 2 Reactor Building roof protection layer

Investigation inside the Unit 2 PCV

Results of the questionnaire survey for workers to improve the work environment

* Data of Monitoring Posts (MP1-MP8.)

Data (10-minute values) of Monitoring Posts (MPs) measuring the airborne radiation rate around site boundaries show 0.483 – 1.784 μSv/h (November 29 – December 19, 2017). We improved the measurement conditions of monitoring posts 2 to 8 to measure the air-dose rate precisely. Construction works, such as tree-clearing, surface soil removal and shield wall setting, were implemented from February 10 to April 18, 2012. Therefore monitoring results at these points are lower than elsewhere in the power plant site.

The radiation shielding panels around monitoring post No. 6, which is one of the instruments used to measure the radiation dose at the power station site boundary, were taken off from July 10-11, 2013, since further deforestation, etc. has caused the surrounding radiation dose to decline significantly.

* Data of Monitoring Posts (MP1-MP8.)
I. Confirmation of the reactor conditions

1. Temperatures inside the reactors

Through continuous reactor cooling by water injection, the temperatures of the Reactor Pressure Vessel (RPV) bottom and the Primary Containment Vessel (PCV) gas phase were maintained within the range of approx. 15 to 30°C for the past month, though it varied depending on the unit and location of the thermometer.

- Operation of the groundwater bypass

From April 9, 2014, the operation of 12 groundwater bypass pumping wells commenced sequentially to pump up groundwater. The release started from May 21, 2014 in the presence of officials from the Intergovernmental Liaison Office for the Decommissioning and Contaminated Water Issue of the Cabinet Office. Up until November 19, 2017, 337,010 m³ of groundwater had been released. The pumped-up groundwater was temporarily stored in tanks and released after TEPCO and a third-party organization had confirmed that its quality met operational targets.

- Pumps are inspected and cleaned as required based on their operational status.

- Water Treatment Facility special for Subdrain & Groundwater drains

To reduce the level of groundwater flowing into the buildings, work began to pump up groundwater from wells (subdrains) around the buildings on September 3, 2015. The pumped-up groundwater was then purified at dedicated facilities and released from September 14, 2015 onwards. Up until December 18, 2017, a total of 471,998 m³ had been drained after TEPCO and a third-party organization had confirmed that its quality met operational targets.

- Due to the level of the groundwater drain pond rising after the sea-side impermeable walls had been closed, pumping started on November 5, 2015. Up until December 17, 2017, a total of approx. 165,900 m³ had been pumped up and a volume of approx. less than 10 m³/day is being transferred from the groundwater drain to the Turbine Buildings (average for the period November 23 - December 13, 2017).

- As an enhancement measure, the treatment facility for subdrains and groundwater drains is being upgraded. Additional water collection tanks and temporary water storage tanks were installed and the installation of fences, pipes and ancillary facilities is also underway. The treatment capacity is being enhanced incrementally to accommodate the increasing volume of pumped-up groundwater during the high rainfall season (before measures: approx. 800 m³/day, from August 22: approx. 900 m³/day, after temporary water storage tanks put into operation: approx. 1,200 m³/day and after water collection tanks put into operation: approx. 1,500m³/day).

- To maintain the level of groundwater pumped up from subdrains, work to install additional subdrain pits and recover existing subdrain pits is underway. They will go into operation sequentially from a pit for which work is completed (the number of pits which went into operation: 8 of 15 additional pits, 0 of 4 recovered pits).

- To eliminate the suspension of water pumping while cleaning the subdrain transfer pipe, the pipe will be duplicated. Installation of the pipe and ancillary facility is underway.

- Since the subdrains went into operation, the inflow into buildings tended to decline to less than 150 m³/day when the subdrain water level declined below T.P. 3.0 m, while the inflow increased during rainfall.

2. Release of radioactive materials from the Reactor Buildings

As of November 2017, the density of radioactive materials newly released from Reactor Building Units 1-4 in the air and measured at the site boundary was evaluated at approx. 1.5×10⁻¹² Bq/cm³ for Cs-134 and 4.1×10⁻¹² Bq/cm³ for Cs-137, while the radiation exposure dose due to the release of radioactive materials there was less than 0.00022 mSv/year.

- Additional water collection tanks and temporary water storage tanks were installed and the installation of fences, pipes and ancillary facilities is also underway. The treatment capacity is being enhanced incrementally to accommodate the increasing volume of pumped-up groundwater during the high rainfall season (before measures: approx. 800 m³/day, from August 22: approx. 900 m³/day, after temporary water storage tanks put into operation: approx. 1,200 m³/day and after water collection tanks put into operation: approx. 1,500m³/day).

- To tackle the increase in accumulated water due to groundwater inflow, fundamental measures to prevent such inflow into the Reactor Buildings will be implemented, while improving the decontamination capability of water treatment and preparing facilities to control the contaminated water.
Construction status of the land-side impermeable walls

- For West (3) of the land-side impermeable walls (on the mountain side), a supplementary method was implemented (July 31 – September 15). Freezing started from August 22 and the underground temperature has been declining steadily. The difference between the inside and outside of the land-side impermeable walls near the same section increased.
- In the land-side impermeable walls, a maintenance operation to control the frozen soil from getting any thicker continues from May 22 on the north and south sides and started from November 13 on the east side where a sufficient thickness of frozen soil was identified.
- The underground temperature, water levels and pumped-up groundwater volume will continue to be monitored to confirm the effect of the land-side impermeable walls.

Operation of multi-nuclide removal equipment

- Regarding the multi-nuclide removal equipment (existing and high-performance), hot tests using radioactive water were underway (for existing equipment, System A: from March 30, 2013, System B: from June 13, 2013, System C: from September 27, 2013; and for high-performance equipment, from October 18, 2014). The additional multi-nuclide removal equipment went into full-scale operation from October 16.
- As of December 14, the volumes treated by existing, additional and high-performance multi-nuclide removal equipment were approx. 370,000, 400,000 and 103,000 m³ respectively (including approx. 9,500 m³ stored in the J1(D) tank, which contained water with a high density of radioactive materials at the System B outlet of existing multi-nuclide removal equipment).
- To reduce the risks of strontium-treated water, treatment using existing, additional and high-performance multi-nuclide removal equipment has been underway (existing: from December 4, 2015; additional: from May 27, 2015; high-performance: from April 15, 2015). Up until December 14, 414,000 m³ had been treated.
- Toward reducing the risk of contaminated water stored in tanks
- Treatment measures comprising the removal of strontium by cesium-absorption apparatus (KURION) (from January 6, 2015) and the secondary cesium-absorption apparatus (SARRY) (from December 26, 2014) have been underway. Up until December 14, approx. 420,000 m³ had been treated.

Measures in Tank Areas

- Rainwater, under the release standard and having accumulated within the fences in the contaminated water tank area, was sprinkled on site after eliminating radioactive materials using rainwater-treatment equipment since May 21, 2014 (as of December 18, 2017, a total of 96,684 m³).

As of December 14, 2017

- Weekly fluctuation
- Changes in treated water inside buildings + Storage increase (+): 1
- Changes in Sr treated water inside buildings ++: 2
- Changes in treated water inside buildings, Sr treated water ++: 3
- Changes in treated water inside buildings, Sr treated water ++: 4

Figure 2: Closure of part of the land-side impermeable walls (on the mountain side)

Figure 3: Status of stagnant water storage

- Increase after the last Secretariat meeting
- Increase/decrease in Sr treated water, etc.

*1: Water amount for which the water-level gauge indicates 0% or more
*2: On January 19, 2017, the water volume was reviewed by reevaluating the remaining volume of concentrated salt water and the data was corrected.
*3: Including the effect of variation in water volume stored in tanks with the change in temperature.
*4: The increase is considered attributable to the uncertain cross-sectional area (evaluated value) for the water level needed to calculate the water volume stored in the Centralized Radiation Waste Treatment Facility. Since the calculation of June 1, 2017, the cross-sectional area (evaluated value) has been reviewed.
*5: Including rainwater volume which could not be treated in the rainwater treatment facilities, transferred to Sr-treated water. The increase in treated water, etc., [2 – 4]
*6: Corrected based on the result of an investigation conducted on July 5, 2017 revealing that the water volume in the uninvestigated areas in Unit 1 T/B was less than assumed.
Management status of secondary waste from water treatment

- As of December 7, 2017, the total storage volume of waste sludge was 597 m³ (area-occupation rate: 85%) and that of concentrated waste fluid was 9,341 m³ (area-occupation rate: 87%). The total number of stored spent vessels, High-Integrity Containers (HICs) for multi-nuclide removal equipment, etc., was 3,837 (area-occupation rate: 60%).

5. Reactor cooling

The cold shutdown condition will be maintained by cooling the reactor by water injection and measures to complement the status monitoring will continue

- Installation of PE pipes to the Unit 1-3 core splay (CS) system lines
 - In the Unit 1-3 reactor water injection equipment, SUS flexible tubes within and outside the Turbine Building of the core spray (CS) system lines are being replaced with PE pipes to improve reliability.
 - Replacement for Unit 1 was completed on October 18. Pipe replacement within the Unit 2 Turbine Building started on October 30. The CS system has been suspended since December 18 for replacement of the CS system connection pipes. Following water injection solely by the feed water (FDW) system, water injection by both the CS and FDW systems will be recovered on December 25. Pipes within the Unit 3 Turbine Building will be replaced from February.
 - Pipes outside Units 2 and 3 will be replaced from the next fiscal year.

- Winter operation shift of the Unit 1-3 SFP circulating cooling system
 - To prevent excessive cooling (freezing) of the common spent fuel pool (SFP) circulating cooling system shared by Units 1-3, the Air-Cooled Heat Exchanger (Air Fin Cooler) for the common system has been suspended since November 30 as a winter operation shift.

6. Reduction in radiation dose and mitigation of contamination

Effective dose-reduction at site boundaries and purification of port water to mitigate the impact of radiation on the external environment

- Status of groundwater and seawater on the east side of Turbine Building Units 1-4
 - Regarding radioactive materials in the groundwater near the bank on the north side of the Unit 1 intake, despite the tritium density in groundwater Observation Hole No. 0-1 gradually increasing since October 2016, it currently remains constant at around 12,000 Bq/L.
 - Regarding the groundwater near the bank between the Unit 1 and 2 intakes, though the density of gross β radioactive materials at groundwater Observation Hole No. 1 had remained constant at around 18,000 Bq/L, it has been increasing since June 2017 and currently stands at around 30,000 Bq/L. Though the density of gross β radioactive materials at groundwater Observation Hole No. 1-6 had been increasing since March 2017, it has been declining since June 2017 and currently stands at around 100,000 Bq/L. Though the tritium density at groundwater Observation Hole No. 1-9 had remained constant at around 700 Bq/L, it has been increasing since October 2017 and currently stands at around 1,300 Bq/L. Though the density of gross β radioactive materials at the same groundwater Observation Hole had remained constant at around 20 Bq/L, it had been increasing to 140 Bq/L since October 2017 and then declining, currently standing at around 50 Bq/L. Though the density of gross β radioactive materials at the groundwater Observation Hole No. 1-12 had been increasing from around 20 Bq/L since May 2017 to 4,000 Bq/L, then declining, it had been increasing from around 700 Bq/L since November 2017 and currently stands at around 2,000 Bq/L. Though the tritium density at groundwater Observation Hole No. 1-16 had been increasing from around 2,000 Bq/L since October 2017 to 5,000 Bq/L, then declining, it currently stands at around 3,000 Bq/L. The tritium density at groundwater Observation Hole No. 1-17 had been increasing from 1,000 Bq/L since February 2017 and currently stands at around 30,000 Bq/L. Though the density of gross β radioactive materials at the same groundwater Observation Hole increased from 200,000 to 600,000 Bq/L in May 2017 and then declined, it currently stands at around 40,000 Bq/L. Since August 15, 2013, pumping of groundwater continued (at...
the well point between the Unit 1 and 2 intakes: August 15, 2013 – October 13, 2015 and from October 24; at the repaired well: October 14 - 23, 2015).

• Regarding radioactive materials in the groundwater near the bank between the Unit 2 and 3 intakes, the tritium density at groundwater Observation Hole No. 2-2 has been increasing from around 300 Bq/L since May 2017 and currently stands at around 700 Bq/L. Though the tritium density at groundwater Observation Hole No. 2-3 had been increasing from around 600 to 1,600 Bq/L since March 2017 and then declining, it currently stands at around 1,000 Bq/L. Though the density of gross β radioactive materials at the same groundwater Observation Hole had been increasing from around 600 to 1,300 Bq/L since June 2017 and then declining to 500 Bq/L, it had been increasing since December 2017 and currently stands at around 800 Bq/L. Though the tritium density at groundwater Observation Hole No. 2-5 had been declining from 2,000 to 600 Bq/L since April 2017, it currently stands at around 1,400 Bq/L. Though the density of gross β radioactive materials at the same groundwater Observation Hole had been increasing from around 10,000 to 80,000 Bq/L since November 2016 and then declining, it had been increasing since November 2017 and currently stands at around 40,000 Bq/L. Since December 18, 2013, pumping of groundwater continued (at the well point between the Unit 2 and 3 intakes: December 18, 2013 - October 13, 2015; at the repaired well: from October 14, 2015).

• Regarding radioactive materials in the groundwater near the bank between the Unit 3 and 4 intakes, though the tritium density at groundwater Observation Hole No. 3 had remained constant at around 4,000 Bq/L, it had been increasing since November 2017 and currently stands at around 7,000 Bq/L. The tritium density at groundwater Observation Hole No. 3-2 has been declining from around 3,000 Bq/L since October 2016 and currently stands at around 900 Bq/L. The density of gross β radioactive materials at the same groundwater Observation Hole has been declining from around 3,500 Bq/L since October 2016 and currently stands at around 600 Bq/L. Though the tritium density at groundwater Observation Hole No. 3-3 has been declining from around 1,200 to 500 Bq/L since July 2017, it had been increasing since October 2017 and currently stands at around 1,000 Bq/L. Though the density of gross β radioactive materials at the same groundwater Observation Hole had been declining since September 2016, it had been increasing from 1,500 Bq/L since October 2017 and currently stands at around 2,000 Bq/L. At groundwater Observation Hole No. 3-4, though the tritium density had been declining from 4,000 to 1,000 Bq/L since March 2017, it had been increasing since October 2017 and currently stands at around 2,000 Bq/L. Since April 1, 2015, pumping of groundwater continued (at the well point between the Unit 3 and 4 intakes: April 1 – September 16, 2015; at the repaired well: from September 17, 2015).

• Regarding the radioactive materials in seawater in the Unit 1-4 intake area, densities have remained low except for the increase in cesium 137 and strontium 90 during heavy rain. They have been declining following the completed installation and the connection of steel pipe sheet piles for the sea-side impermeable walls. The density of cesium 137 has been increasing since January 25, 2017, when a new silt fence was installed to accommodate the relocation.

• Regarding the radioactive materials in seawater in the area within the port, densities have remained low except for the increase in cesium 137 and strontium 90 during heavy rain. They have been declining following the completed installation and the connection of steel pipe sheet piles for the sea-side impermeable walls.

• Regarding the radioactive materials in seawater in the area outside the port, densities of cesium 137 and strontium 90 have been declining and remained low following the completed installation and the connection of steel pipe sheet piles for the sea-side impermeable walls.

Figure 4: Groundwater density on the Turbine Building east side
Sampling Date: Dec 19, 2017

- **Partner Company**
 - 6720
 - 6900
 - 6690

Sampling Date: Dec 18, 2017

- **Partner Company**
 - 5850
 - 6940

Sampling Date: Dec 19, 2017

- **Partner Company**
 - 5590
 - 5530

Sampling Date: Dec 19, 2017

- **Partner Company**
 - 5920
 - 6740

Sampling Date: Dec 19, 2017

- **Partner Company**
 - 6450
 - 6430

Sampling Date: Dec 18, 2017

- **Partner Company**
 - 5380

Sampling Date: Dec 19, 2017

- **Partner Company**
 - 5230

Sampling Date: Dec 19, 2017

- **Partner Company**
 - 5150

Sampling Date: Dec 19, 2017

- **Partner Company**
 - 5090

Sampling Date: Dec 19, 2017

- **Partner Company**
 - 0

7. Outlook of the number of staff required and efforts to improve the labor environment and conditions

Securing appropriate staff long-term while thoroughly implementing workers’ exposure dose control, improving the work environment and labor conditions continuously based on an understanding of workers’ on-site needs

- **Staff management**
 - The monthly average total of people registered for at least one day per month to work on site during the past quarter from August to October 2017 was approx. 11,500 (TEPCO and partner company workers), which exceeded the monthly average number of actual workers (approx. 8,700). Accordingly, sufficient people are registered to work on site.
 - It was confirmed with the prime contractors that the estimated manpower necessary for the work in January 2018 (approx. 5,070 per day: TEPCO and partner company workers) would be secured at present. The average numbers of workers per day per month (actual values) were maintained, with approx. 5,000 to 7,000 since FY2015 (see Figure 6).
 - The number of workers from both within and outside Fukushima Prefecture has remained constant. The local employment ratio (TEPCO and partner company workers) as of November has remained at around 60%.
 - The monthly average exposure dose of workers remained at approx. 0.81 mSv/month during FY2014, approx. 0.59 mSv/month during FY2015 and approx. 0.39 mSv/month during FY2016. (Reference: Annual average exposure dose 20 mSv/year ≈ 1.7 mSv/month)
 - For most workers, the exposure dose was sufficiently within the limit and allowed them to continue engaging in radiation work.

- **Measures to prevent infection and expansion of influenza and norovirus**
 - Since November, measures for influenza and norovirus have been implemented, including free influenza vaccinations (subsidized by TEPCO HD) in the Fukushima Daiichi Nuclear Power Station (from October 25 to November 24) and medical clinics around the site (from November 1 to January 31, 2018) for partner company workers. As of December 18, a total of 6,319 workers had been vaccinated. In addition, a comprehensive range of other measures is also being implemented, including daily actions to prevent infection and expansion (measuring body temperature, health checks and monitoring infection status) and response after detecting possible infections (swift exit of possible patients and control of entry, mandatory wearing of masks in working spaces, etc.).

- **Status of influenza and norovirus cases**
 - Until the 50th week of 2017 (December 11-17, 2017), eight influenza infections and two norovirus infections were recorded. The totals for the same period for the previous season showed 47 cases of influenza and five norovirus infections.

- **Results of the 8th questionnaire survey for workers to improve the work environment and the direction of future improvement**
 - With the aim of improving the work environment at the Fukushima Daiichi Nuclear Power Station, the 8th questionnaire survey was conducted. (Approx. 5,500 workers responded to the questionnaire, with the collection rate of approx. 91%, a 2.6% increase compared to the previous survey).
As in the previous year, more than 85% of respondents evaluated the major efforts having been made for improvement as “good” and “reasonably good.”

An investigation into the actual conditions was also conducted into items concerning the working conditions for which a follow-up investigation was considered necessary and prime contractors / employer companies were indicated in the questionnaire answers (indication of company names was not mandated). The investigative results confirmed that the working conditions were appropriate. Efforts to ensure appropriate labor conditions will continue under the guidance of regulatory authorities.

8. Status of Units 5 and 6

➢ Status of spent fuel storage in Units 5 and 6
 • Regarding Unit 5, fuel removal from the reactor was completed in June 2015. 1,374 spent fuel assemblies and 168 non-irradiated fuel assemblies are stored in the spent fuel pool (storage capacity: 1,590 assemblies).
 • Regarding Unit 6, fuel removal from the reactor was completed in FY2013. 1,456 spent fuel assemblies and 198 non-irradiated fuel assemblies (180 of which were transferred from the Unit 4 spent fuel pool) are stored in the spent fuel pool (storage capacity: 1,654 assemblies) and 230 non-irradiated fuel assemblies are stored in the storage facility of non-irradiated fuel assemblies (storage capacity: 230 assemblies).

➢ Status of stagnant water in Units 5 and 6
 • Stagnant water in Units 5 and 6 is transferred from Unit 6 Turbine Building to outdoor tanks and sprinkled after undergoing oil separation and RO treatment and confirming the density of radioactive materials.

9. Others

➢ Annual inspection results of Unit 1-2 exhaust stack (FY2017)
 • Regarding the stack of Units 1-2, there is a plan to dismantle the upper part from the 2nd half of FY2018 to further reduce risks. To confirm safety until the dismantling, annual inspections have been conducted.
 • Inspections conducted since 2013 identified breakages of diagonal braces (nine parts) around 66m and 45m above ground.
 • From this fiscal year, an annual inspection was conducted (October 2017) with an improved inspection method, which was developed after inspections from the Unit 1-2 Turbine Building roof were allowed in the improved work environment. The inspection results identified no other damage than the nine distortions and breakages which had already been detected.
Status of seawater monitoring within the port (comparison between the highest values in 2013 and the latest values)

The highest value → “the latest value (sampled during December 11-19)”; unit (Bq/L); ND represents a value below the detection limit

Sea side

<table>
<thead>
<tr>
<th>Nuclide</th>
<th>2013 (sampled)</th>
<th>Latest (sampled)</th>
<th>Unit</th>
<th>ND Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cesium-134</td>
<td>3.3 (2013/10/17)</td>
<td>ND(0.30)</td>
<td>Below 1/10</td>
<td></td>
</tr>
<tr>
<td>Cesium-137</td>
<td>9.0 (2013/10/17)</td>
<td>ND(0.29)</td>
<td>Below 1/30</td>
<td></td>
</tr>
<tr>
<td>Gross β</td>
<td>74 (2013/ 8/19)</td>
<td>ND(3.0)</td>
<td>Below 1/20</td>
<td></td>
</tr>
<tr>
<td>Tritium</td>
<td>67 (2013/ 8/19)</td>
<td>ND</td>
<td>Below 1/4</td>
<td></td>
</tr>
</tbody>
</table>

From February 11, 2017, the location of the sampling point was shifted approx. 50 m south of the previous point due to the location shift of the silt fence.

Silt fence

<table>
<thead>
<tr>
<th>Nuclide</th>
<th>2013 (sampled)</th>
<th>Latest (sampled)</th>
<th>Unit</th>
<th>ND Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cesium-134</td>
<td>4.4 (2013/12/24)</td>
<td>ND(0.31)</td>
<td>Below 1/10</td>
<td></td>
</tr>
<tr>
<td>Cesium-137</td>
<td>10 (2013/12/24)</td>
<td>ND(0.27)</td>
<td>Below 1/30</td>
<td></td>
</tr>
<tr>
<td>Gross β</td>
<td>60 (2013/ 7/4)</td>
<td>ND(17)</td>
<td>Below 1/3</td>
<td></td>
</tr>
<tr>
<td>Tritium</td>
<td>59 (2013/ 8/19)</td>
<td>ND(4.3)</td>
<td>Below 1/10</td>
<td></td>
</tr>
</tbody>
</table>

East side in the port

<table>
<thead>
<tr>
<th>Nuclide</th>
<th>2013 (sampled)</th>
<th>Latest (sampled)</th>
<th>Unit</th>
<th>ND Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cesium-134</td>
<td>2.8 (2013/12/2)</td>
<td>ND(0.45)</td>
<td>Below 1/6</td>
<td></td>
</tr>
<tr>
<td>Cesium-137</td>
<td>5.8 (2013/12/2)</td>
<td>ND(0.50)</td>
<td>Below 1/10</td>
<td></td>
</tr>
<tr>
<td>Gross β</td>
<td>46 (2013/ 8/19)</td>
<td>ND(16)</td>
<td>Below 1/2</td>
<td></td>
</tr>
<tr>
<td>Tritium</td>
<td>24 (2013/ 8/19)</td>
<td>ND(1.9)</td>
<td>Below 1/10</td>
<td></td>
</tr>
</tbody>
</table>

* Monitoring commenced in or after March 2014. Monitoring inside the sea-side impermeable walls was finished because of the landfill.

West side in the port

<table>
<thead>
<tr>
<th>Nuclide</th>
<th>2013 (sampled)</th>
<th>Latest (sampled)</th>
<th>Unit</th>
<th>ND Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cesium-134</td>
<td>5.3 (2013/8/ 5)</td>
<td>ND(0.56)</td>
<td>Below 1/9</td>
<td></td>
</tr>
<tr>
<td>Cesium-137</td>
<td>8.6 (2013/8/ 5)</td>
<td>ND(0.50)</td>
<td>Below 1/10</td>
<td></td>
</tr>
<tr>
<td>Gross β</td>
<td>40 (2013/7/ 3)</td>
<td>ND(16)</td>
<td>Below 1/2</td>
<td></td>
</tr>
<tr>
<td>Tritium</td>
<td>340 (2013/6/26)</td>
<td>ND</td>
<td>Below 1/80</td>
<td></td>
</tr>
</tbody>
</table>

North side in the port

<table>
<thead>
<tr>
<th>Nuclide</th>
<th>2013 (sampled)</th>
<th>Latest (sampled)</th>
<th>Unit</th>
<th>ND Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cesium-134</td>
<td>0.74</td>
<td>ND(0.77)</td>
<td>Below 1/5</td>
<td></td>
</tr>
<tr>
<td>Cesium-137</td>
<td>3.3</td>
<td>ND(3.0)</td>
<td>Below 1/10</td>
<td></td>
</tr>
<tr>
<td>Gross β</td>
<td>55</td>
<td>ND(16)</td>
<td>Below 1/2</td>
<td></td>
</tr>
<tr>
<td>Tritium</td>
<td>48</td>
<td>ND</td>
<td>Below 1/10</td>
<td></td>
</tr>
</tbody>
</table>

In front of Unit 1 intake

<table>
<thead>
<tr>
<th>Nuclide</th>
<th>2013 (sampled)</th>
<th>Latest (sampled)</th>
<th>Unit</th>
<th>ND Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cesium-134</td>
<td>60</td>
<td>ND(1.9)</td>
<td>Below 1/10</td>
<td></td>
</tr>
<tr>
<td>Cesium-137</td>
<td>90</td>
<td>ND(1.9)</td>
<td>Below 1/10</td>
<td></td>
</tr>
</tbody>
</table>

In front of shallow draft quay

<table>
<thead>
<tr>
<th>Nuclide</th>
<th>2013 (sampled)</th>
<th>Latest (sampled)</th>
<th>Unit</th>
<th>ND Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cesium-134</td>
<td>ND(0.43)</td>
<td>0.74</td>
<td>Below 1/5</td>
<td></td>
</tr>
<tr>
<td>Cesium-137</td>
<td>3.3</td>
<td>ND(3.0)</td>
<td>Below 1/10</td>
<td></td>
</tr>
<tr>
<td>Gross β</td>
<td>55</td>
<td>ND(16)</td>
<td>Below 1/2</td>
<td></td>
</tr>
<tr>
<td>Tritium</td>
<td>48</td>
<td>ND</td>
<td>Below 1/10</td>
<td></td>
</tr>
</tbody>
</table>

Summary of TEPCO data as of December 20, 2017

<table>
<thead>
<tr>
<th>Nuclide</th>
<th>Legal discharge limit (Bq/L)</th>
<th>WHO Guidelines for Drinking Water Quality (Bq/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cesium-134</td>
<td>60</td>
<td>10</td>
</tr>
<tr>
<td>Cesium-137</td>
<td>90</td>
<td>10</td>
</tr>
<tr>
<td>Strontium-90 (strongly correlate with Gross β)</td>
<td>30</td>
<td>10</td>
</tr>
<tr>
<td>Tritium</td>
<td>60,000</td>
<td>10,000</td>
</tr>
</tbody>
</table>

Note: The gross β measurement values include natural potassium 40 (approx. 12 Bq/L). They also include the contribution of yttrium 90, which radioactively balance strontium 90.
Status of seawater monitoring around outside of the port (comparison between the highest values in 2013 and the latest values)

Unit (Bq/L); ND represents a value below the detection limit; values in () represent the detection limit; ND (2013) represents ND throughout 2013.

Northeast side of port entrance (offshore 1km)
- Cesium-134: ND (2013) → ND (0.74)
- Cesium-137: ND (2013) → ND (0.76)
- Gross β: ND (2013) → ND (15)
- Tritium: ND (2013) → ND (1.9)

East side of port entrance (offshore 1km)
- Cesium-134: ND (2013) → ND (0.64)
- Cesium-137: 1.6 (2013/10/18) → ND (0.64) Below 1/2
- Gross β: ND (2013) → ND (15)
- Tritium: 6.4 (2013/10/18) → ND (1.9) Below 1/3

North side of north breakwater (offshore 0.5km)
- Cesium-134: ND (2013) → ND (0.55)
- Cesium-137: ND (2013) → ND (0.53)
- Gross β: ND (2013) → ND (15)
- Tritium: 4.7 (2013/8/18) → ND (1.9) Below 1/2

North side of Unit 5 and 6 release outlet
- Cesium-134: 1.8 (2013/6/21) → ND (0.67) Below 1/2
- Cesium-137: 4.5 (2013/3/17) → ND (0.68) Below 1/6
- Gross β: 12 (2013/12/23) → 13
- Tritium: 8.6 (2013/6/26) → ND (1.5) Below 1/5

South side of south breakwater (offshore 0.5km)
- Cesium-134: 3.3 (2013/12/24) → ND (0.64) Below 1/5
- Cesium-137: 7.3 (2013/10/11) → 0.76 Below 1/9
- Gross β: 69 (2013/8/19) → ND (15) Below 1/4
- Tritium: 68 (2013/8/19) → ND (1.5) Below 1/40

North side of Unit 5 and 6 release outlet
- Cesium-134: ND (2013) → ND (0.63)
- Cesium-137: ND (2013) → ND (0.62)
- Gross β: ND (2013) → ND (15)
- Tritium: ND (2013) → ND (1.9)

Southeast side of port entrance (offshore 1km)
- Cesium-134: ND (2013) → ND (0.65)
- Cesium-137: ND (2013) → ND (0.60)
- Gross β: ND (2013) → ND (15)
- Tritium: ND (2013) → ND (1.9)

South side of south breakwater (offshore 0.5km)
- Cesium-134: 1.8 (2013/6/21) → ND (0.67) Below 1/2
- Cesium-137: 4.5 (2013/3/17) → ND (0.68) Below 1/6
- Gross β: 12 (2013/12/23) → 13
- Tritium: 8.6 (2013/6/26) → ND (1.5) Below 1/5

Near south release outlet
- Cesium-134: ND (2013) → ND (0.74)
- Cesium-137: 3.0 (2013/7/15) → ND (0.53) Below 1/5
- Gross β: 15 (2013/12/23) → 11
- Tritium: 1.9 (2013/11/25) → ND (1.6)

Note: The gross β measurement values include natural potassium 40 (approx. 12 Bq/L). They also include the contribution of yttrium 90, which radioactively balance strontium 90.

Legal discharge limit

<table>
<thead>
<tr>
<th>Nuclide</th>
<th>WHO Guidelines for Drinking Water Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cesium-134</td>
<td>60</td>
</tr>
<tr>
<td>Cesium-137</td>
<td>90</td>
</tr>
<tr>
<td>Strontium-90</td>
<td>Strongly correlate with Gross β</td>
</tr>
<tr>
<td>Tritium</td>
<td>60,000</td>
</tr>
</tbody>
</table>

Below 1/5
- Cesium-134: ND (2013) → ND (0.55)
- Cesium-137: ND (2013) → ND (0.53)
- Gross β: ND (2013) → ND (15)
- Tritium: 4.7 (2013/8/18) → ND (1.9) Below 1/2

Below 1/2
- Cesium-134: 1.8 (2013/6/21) → ND (0.67) Below 1/2
- Cesium-137: 4.5 (2013/3/17) → ND (0.68) Below 1/6
- Gross β: 12 (2013/12/23) → 13
- Tritium: 8.6 (2013/6/26) → ND (1.5) Below 1/5

Below 1/4
- Cesium-134: 3.3 (2013/12/24) → ND (0.64) Below 1/5
- Cesium-137: 7.3 (2013/10/11) → 0.76 Below 1/9
- Gross β: 69 (2013/8/19) → ND (15) Below 1/4
- Tritium: 68 (2013/8/19) → ND (1.5) Below 1/40

Below 1/6
- Cesium-134: 1.8 (2013/6/21) → ND (0.67) Below 1/2
- Cesium-137: 4.5 (2013/3/17) → ND (0.68) Below 1/6
- Gross β: 12 (2013/12/23) → 13
- Tritium: 8.6 (2013/6/26) → ND (1.5) Below 1/5

Summary of TEPCO data as of December 20, 2017

Regarding fuel removal from Unit 1 spent fuel pool, there is a plan to install a dedicated cover for fuel removal over the top floor of the Reactor Building (operating floor). All roof panels and wall panels of the building cover were dismantled by November 10, 2016. Removal of pillars and beams of the building was completed on May 11. Modification of the pillars and beams of the building cover and installation of building cover were completed by December 19. Thorough monitoring of radioactive materials will continue.

To facilitate removal of fuel assemblies and retrieval of debris in the Unit 2 spent fuel pool, the scope of dismantling and modification of the existing Reactor Building rooftop was examined. From the perspective of ensuring safety during the work, controlling impacts on the outside of the power station, and removing fuel rapidly to reduce risks, we decided to dismantle the whole rooftop above the highest floor of the Reactor Building. Examination of the following two plans continues: Plan 1 to share a container for removing fuel assemblies from the pool and retrieving fuel debris; and Plan 2 to install a dedicated cover for fuel removal from the pool.

In the Mid- and Long-Term Roadmap, the target of Phase 1 involved commencing fuel removal from inside the spent fuel pool (SFP) of the 1st Unit within two years of completion of Step 2 (by December 2013). On November 18, 2013, fuel removal from Unit 4, or the 1st Unit, commenced and Phase 2 of the roadmap started. On November 5, 2014, within a year of commencing work to fuel removal, all 1,331 spent fuel assemblies in the pool had been transferred. The transfer of the remaining non-irradiated fuel assemblies to the Unit 6 SFP was completed on December 22, 2014. (2 of the non-irradiated fuel assemblies were removed in advance in July 2012 for fuel checks) This marks the completion of fuel removal from the Unit 4 Reactor Building. Based on this experience, fuel assemblies will be removed from Unit 1-3 pools.

Prior to the installation of a cover for fuel removal, removal of large rubble from the spent fuel pool was completed in November 2015. To ensure safe and steady fuel removal, training of remote control was conducted at the factory using the actual fuel-handling machine which will be installed on site (February – December 2015). Installation of a cover for fuel removal and a fuel-handling machine is underway from January 2017.
Progress toward decommissioning: Works to identify the plant status and toward fuel debris retrieval

Immediate target
- Identify the plant status and commence R&D and decontamination toward fuel debris retrieval

Investigation into TIP Room of the Unit 1 Reactor Building

- To improve the environment for future investigations inside the PCV, etc., an investigation was conducted from September 24 to October 2, 2015 at the TIP Room(1). (Due to high dose around the entrance in to the TIP Room, the investigation of dose rate and contamination distribution was conducted through a hole drilled from the walkway of the Turbine Building, where the dose was low)
- The investigative results identified high dose at X-31 to 33 penetrations(2) (instrumentation penetration) and low dose at other parts.
- As it was confirmed that work inside the TIP room would be available, the next step will include identification of obstacles which will interfere the work inside the TIP Room and formulation of a plan for dose reduction.

Unit 1

- **Air dose rate inside the Reactor Building:** Max. 5,150 mSv/h (1F southeast area) (measured on July 4, 2012)

Status of investigation inside the PCV

Prior to fuel debris retrieval, an investigation inside the PCV will be conducted to inspect the status there including the location of fuel debris.

[Investigative outline]

- In April 2015, a device, which entered the inside of the PCV through a narrow access opening (bore: φ100 mm), collected information such as images and airborne dose inside the PCV 1st floor.
- In March 2017, the investigation using a self-propelled investigation device, conducted to inspect the spreading of debris to the basement floor outside the pedestal, took images of the PCV bottom status for the first time. The status inside the PCV will continue to be examined based on the collected image and dose data.

Investigation in the leak point detected in the upper part of the Unit 1 Suppression Chamber (S/C(3))

Investigation in the leak point detected in the upper part of Unit 1 S/C from May 27, 2014 from one expansion joint cover among the lines installed there. As no leakage was identified from other parts, specific methods will be examined to halt the flow of water and repair the PCV.

Investigation in the leak point detected in the upper part of Unit 1 S/C from May 27, 2014 from one expansion joint cover among the lines installed there.

Investigations inside PCV

<table>
<thead>
<tr>
<th>Period</th>
<th>Evaluation results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feb - May 2015</td>
<td>Confirmed that there was no large fuel in the reactor core.</td>
</tr>
</tbody>
</table>

Glossary

- (1) TIP (Traversing In-core Probe)
- (2) Penetration: Through hole of the PCV
- (3) S/C (Suppression Chamber): Suppression pool, used as the water source for the emergent core cooling system
- (4) SFP (Spent Fuel Pool)
- (5) RPV (Reactor Pressure Vessel)
- (6) PCV (Primary Containment Vessel)
Progress toward decommissioning: Works to identify the plant status and toward fuel debris retrieval

Immediate target
Identify the plant status and commence R&D and decontamination toward fuel debris retrieval

Installation of an RPV thermometer and permanent PCV supervisory instrumentation
(1) Replacement of the RPV thermometer
• As the thermometer installed at the Unit 2 RPV bottom after the earthquake had broken in February 2014, it was excluded from the monitoring thermometers.
• On April 2014, removal of the broken thermometer failed and was suspended. Rust-stripping chemicals were injected and the broken thermometer was removed on January 2015. A new thermometer was reinstalled on March. The thermometer has been used as a part of permanent supervisory instrumentation since April.
(2) Reinstallation of the PCV thermometer and water-level gauge
• Some of the permanent supervisory instrumentation for PCV could not be installed in the planned locations due to interference with existing grating (August 2013). The instrumentation was removed on May 2014 and new instruments were reinstalled on June 2014. The trend of added instrumentation will be monitored for approx. one month to evaluate its validity.
• The measurement during the installation confirmed that the water level inside the PCV was approx. 300mm from the bottom.

Investigative results on torus chamber walls
• The torus chamber walls were investigated (on the north side of the east-side walls) using equipment specially developed for that purpose (a swimming robot and a floor traveling robot).
• At the east-side wall pipe penetrations (five points), "the status" and "existence of flow" were checked.
• A demonstration using the above two types of underwater wall investigative equipment showed how the equipment could check the status of penetration.
• Regarding Penetrations 1 - 5, the results of checking the sprayed tracer (*2) by camera showed no flow around the penetrations. (investigation by the swimming robot)
• Regarding Penetration 3, a sonar check showed no flow around the penetrations. (investigation by the floor traveling robot)

Status of investigation inside the PCV
Prior to fuel debris retrieval, an investigation inside the PCV will be conducted to inspect the status there including the location of fuel debris.
[Investigative outline]
• A robot, injected from Unit 2 X-6 penetration (*1), will access the inside of the pedestal using the CRD rail.
[Progress status]
• On January 26 and 30, 2017, a camera was inserted from the PCV penetration to inspect the status of the CRD replacement rail on which the robot will travel. On February 3, deposit on the access route of the self-propelled investigative device was removed and on February 16, the inside of the PCV was investigated using the device.
• The results of this series of investigations confirmed fallen and deformed gratings and a quantity of deposit inside the pedestal.
• From January 2018, the status under the platform where fuel debris potentially existed will be investigated by the upgraded telescopic type investigative device which was used in the previous investigation (January – February 2017).

Capturing the location of fuel debris inside the reactor by measurement using muons
Period
Mar – Jul 2016
Evaluation results
Confirmed the existence of high-density materials, which was considered as fuel debris, at the bottom of RPV, and in the lower part and the outer periphery of the reactor core. It was assumed that a large part of fuel debris existed at the bottom of RPV.
Investigative results into the Unit 3 PCV equipment hatch using a small investigation device

- As part of the investigation into the PCV to facilitate fuel debris retrieval, the status around the Unit 3 PCV equipment hatch was investigated using a small self-traveling investigation device on November 26, 2015.
- Given blots such as rust identified below the water level inside the PCV, there may be a leakage from the seal to the extent of bleeding.
- Methods to investigate and repair the parts, including other PCV penetrations with a similar structure, will be considered.

Investigation inside the PCV

Prior to fuel debris retrieval, the inside of the Primary Containment Vessel (PCV) was investigated to identify the status there including the location of the fuel debris.

[Investigative outline]
- The status of X-53 penetration(*4), which may be under the water and which is scheduled for use to investigate the inside of the RPV(*2), was investigated using remote-controlled ultrasonic test equipment. The results showed that the penetration was not under the water (October 22-24, 2014).
- For the purpose of confirming the status inside the PCV, an investigation device was inserted into the PCV from X-53 penetration on October 20 and 22, 2015 to obtain images, data of dose and temperature and sample stagnant water. No damage was identified on the structure and walls inside the PCV and the water level was almost identical with the estimated value.
- In July 2017, the inside of the PCV was investigated using the underwater ROV (remotely operated underwater vehicle) to inspect the inside of the pedestal.
- Analysis of image data obtained in the investigation identified damage to multiple structures and the supposed core internals. Consideration about fuel removal based on the obtained information will continue.

Capturing the location of fuel debris inside the reactor by measurement using muons

- Measuring water temperature and sample stagnant water
- Installing permanent monitoring instrumentation (December 2015)
- Acquiring images
- Installing permanent monitoring instrumentation (August 2017)

<table>
<thead>
<tr>
<th>Period</th>
<th>Evaluation results</th>
</tr>
</thead>
<tbody>
<tr>
<td>May – Sep 2017</td>
<td>The evaluation confirmed that no large lump existed in the core area where fuel had been placed and that part of the fuel debris potentially existed at the bottom of the RPV.</td>
</tr>
</tbody>
</table>

<Glossary>
- (*1) SFP (Spent Fuel Pool)
- (*2) RPV (Reactor Pressure Vessel)
- (*3) PCV (Primary Containment Vessel)
- (*4) Penetration: Through-hole of the PCV
Progress toward decommissioning: Work related to circulation cooling and stagnant water treatment line

Immediate target

- Stably continue reactor cooling and stagnant water treatment, and improve reliability

Work to improve the reliability of the circulation water injection cooling system and pipes to transfer stagnant water:

- Operation of the reactor water injection system using Unit 3 containment vessels (CST) as a water source commenced on July 5, 2013. Compared to the previous systems, the reliability of the reactor water injection system was enhanced, e.g., by increasing the amount of water-source storage and enhancing durability.
- To reduce the risk of contaminated-water leakage, the circulation loop was shortened by installing a reverse osmosis (RO) device in the Unit 4 Turbine Building within the circulation loop, comprising the transfer of contaminated water, water treatment and injection into the reactors. Operation of the installed RO device started from October 7 and 24-hour operation started from October 20. Installation of the new RO device inside the building shortened the circulation loop from approx. 3 to 0.8 km.

Progress status of dismantling of flange tanks

- To facilitate replacement of flange tanks, dismantling of flange tanks started in H1 east/H2 areas in May 2015. Dismantling of all flange tanks was completed in H1 east area (12 tanks) in October 2015, in H2 area (28 tanks) in March 2016 and in H4 area (56 tanks) in May 2017 and in H3 B area (31 tanks) in September 2017. Dismantling of flange tanks in H5 and H6 areas is underway.

Completion of purification of contaminated water (RO concentrated salt water)

- Contaminated water (RO concentrated salt water) is being treated using seven types of equipment including the multi-nuclide removal equipment (ALPS). Treatment of the RO concentrated salt water was completed on May 27, 2015, with the exception of the remaining water at the tank bottom. The remaining water will be treated sequentially toward dismantling the tanks.
- The strontium-treated water from other facilities than the multi-nuclide removal equipment will be re-purified in the multi-nuclide removal equipment to further reduce risks.

Preventing groundwater from flowing into the Reactor Buildings

- To reduce groundwater inflow from the mountain side, freezing started on the sea side and at a part of the mountain side from March 2016 and at 95% of the mountain side from June 2016. On the sea side, the underground temperature declined 0°C or less throughout the scope requiring freezing except for the unfrozen parts under the sea-water pipe trenches and the areas above groundwater level in October 2016.
- Freezing started for two of seven unfrozen sections on the mountain side, from December 2016, and four of the remaining five unfrozen sections from March 2017. Freezing of the remaining five unfrozen sections started in August 2017.

Reducing groundwater inflow by pumping sub-drain water

- To prevent the inflow of groundwater into the buildings, installation of impermeable walls on the land side is planned.
- Land-side impermeable walls were installed from October 2013 to March 2015. The length 1–4 of the impermeable walls is approx. 1,500 m.
- Freezing started on the sea side and at a part of the mountain side from March 2016 and at 95% of the mountain side from June 2016. On the sea side, the underground temperature declined 0°C or less throughout the scope requiring freezing except for the unfrozen parts under the sea-water pipe trenches and the areas above groundwater level in October 2016.
- Freezing started for two of seven unfrozen sections on the mountain side from December 2016, and four of the remaining five unfrozen sections from March 2017. Freezing of the remaining five unfrozen sections started in August 2017.
Progress toward decommissioning: Work to improve the environment within the site

- Reduce the effect of additional release from the entire power station and radiation from radioactive waste (secondary water treatment waste, rubble, etc.) generated after the accident, to limit the effective radiation dose to below 1mSv/year at the site boundaries.
- Prevent contamination expansion in sea, decontamination within the site

Immediate targets

○ Optimization of radioactive protective equipment
Based on the progress of measures to reduce environmental dosage on site, the site is categorized into two zones: highly contaminated area around Unit 1-4 buildings, etc. and other areas to optimize protective equipment according to each category aiming at improving safety and productivity by reducing load during work.
From March 2016, limited operation started. From March and September 2017, the G Zone was expanded.

○ Installation of dose-rate monitors
To help workers in the Fukushima Daiichi Nuclear Power Station precisely understand the conditions of their workplaces, a total of 86 dose-rate monitors were installed by January 4, 2016.
These monitors allow workers to confirm real time on-site dose rates at their workplaces.
Workers are also able to check concentrated data through large-scale displays installed in the Main Anti-Earthquake Building and the access control facility.

○ Installation of sea-side impermeable walls
To prevent the outflow of contaminated water into the sea, sea-side impermeable walls have been installed.
Following the completed installation of steel pipe sheet piles on September 22, 2015, connection of these piles was conducted and connection of sea-side impermeable walls was completed on October 26, 2015. Through these works, closure of sea-side impermeable walls was finished and the contaminated water countermeasures have been greatly advanced.

○ Status of the large rest house
A large rest house for workers was established and its operation commenced on May 31, 2015.
Spaces in the large rest house are also installed for office work and collective worker safety checks as well as taking rest.
On March 1, 2016 a convenience store opened in the large rest house. On April 11, operation of the shower room started. Efforts will continue to improve convenience of workers.